Potential intermediate, (\pm)-di-o-acetyl-3 α-phenylselanyl-3,3a-dihydro-в-nor-6,7a-secolycorin-5-one for synthesis of the Amaryllidaceae alkaloid lycorine: formal and total syntheses of (\pm)-lycorine ${ }^{1}$

Osamu Hoshino, ${ }^{,, a}$ Miyuki Ishizaki, ${ }^{a}$ Keisuke Kamei, ${ }^{a}$ Minoru Taguchi, ${ }^{a}$
Takashi Nagao, ${ }^{a}$ Kiyoshi Iwaoka, ${ }^{a}$ Shohei Sawaki, ${ }^{a}$ Bunsuke Umezawa ${ }^{a}$ and
Yoichi Iitaka ${ }^{b}$
${ }^{a}$ Faculty of Pharmaceutical Sciences, Science University of Tokyo 12, Ichigaya Funagawara-machi, Shinjuku-ku, Tokyo 162, Japan
${ }^{b}$ Department of Biological Sciences, Nishi Tokyo University, Uenohara Kitatsurugun, Yamanashi 409-01, Japan

Abstract

Formal and total syntheses of the Amaryllidaceae alkaloid, (\pm)-lycorine 1, were achieved by new synthetic routes via (\pm)-di-o-acetyl-3a-phenylselanyl-3,3a-dihydro-B-nor-6,7a-secolycorin-5-one 32. Namely, stereoselective intramolecular Diels-Alder reaction of triene ester 5 afforded, in good yield, the cislactone 6 , which was converted into β (stereochemical)-hydroxy- γ-lactam 23. Oxidation of silyl ether 24 with \boldsymbol{m}-chloroperbenzoic acid gave only $\boldsymbol{\beta}$-(tert-butyldimethylsiloxy)- α-epoxide 25 , the stereostructure of which was determined by its X-ray crystallographic analysis. Payne rearrangement of compound 25 and successive acetylation furnished α (stereochemical)-acetoxy- β (stereochemical)-epoxy γ-lactam 29, which was transformed into (\pm)-lycorine 1 by construction of the B ring. Formal total synthesis of (\pm)-lycorine 1 is also described.

Introduction

Lycorine $\mathbf{1}^{\mathbf{2}}$ is one of the important Amaryllidaceae alkaloids because of its many interesting and potential biological activities, in which antiviral ${ }^{3 a, b}$ and antineoplastic activity, ${ }^{3 c, d}$ growth inhibition in higher plants as well as in yeasts, ${ }^{3 e}$ and an effective antifeedant activity ${ }^{3 f, g}$ have been known. Moreover, it has been an attractive target for exploring new synthetic methodology, since its stereostructure bears four contiguous asymmetric centres arranged in all-anti relationships and a double bond in the C ring. Although many synthetic studies ${ }^{4-8}$ on lycorine have appeared to date, in all the reports functionalization was performed after construction of the $\alpha-$ lycorane skeleton except for Boeckman's approach. ${ }^{8}$ In this paper, we now report new formal and total syntheses of (\pm)lycorine $\mathbf{1}$ by introduction of functional groups onto the C ring followed by construction of the B ring. ${ }^{1}$

Our synthetic route to lycorine $\mathbf{1}$ is shown in Scheme 1. We decided to construct the C-D ring by intramolecular DielsAlder reaction ${ }^{9,10}$ of triene ester \mathbf{D} leading to \mathbf{C}, which could control two of the four stereocentres of lycorine. Then, introduction of functional groups onto the C ring by stereoselective epoxidation from the α-face of β (stereochemical)-hydroxy γ lactam derivative \mathbf{B} followed by Payne rearrangement ${ }^{11}$ might afford an epoxy alcohol \mathbf{A}, which could be converted into lycorine through construction of the B ring.

Results and discussion

A solution of ester 5 derived from acid 2^{12} and hexa-3,5-dien1 -ol 4^{13} in o-dichlorobenzene ($2 \% \mathrm{w} / \mathrm{v}$) in a sealed tube was heated at $235^{\circ} \mathrm{C}$ for 94 h to give cis- 6 and trans-lactone 7 in 86 and 5% yield, respectively (Scheme 2). When the reaction was carried out in more than 3% (w/v) o-dichlorobenzene solution of 5 , the yield of compound 6 decreased because of formation of intermolecular Diels-Alder product. The reaction using $\mathrm{Et}_{2} \mathrm{AlCl}^{14}$ as Lewis acid was also performed;

Scheme 1
however, the yield of compound 6 was less than 30% Stereochemistry of δ-lactones 6 and 7 was assumed by ${ }^{1} \mathrm{H}$ NMR analysis. Namely, in the ${ }^{1} \mathrm{H}$ NMR (500 MHz) spectrum, the proton signal due to $8 \mathrm{a}-\mathrm{H}$ of compound 6 appeared at $\delta 2.68$ as a double doublet $(J=3,7.5 \mathrm{~Hz})$, whereas that of lactone 7 was at $\delta 2.78$ as a triplet ($J=11 \mathrm{~Hz}$). From inspection of Dreiding models, these spectral data could be explained reasonably by considering half-chair conformations of 6 and 7 as depicted in Fig. 1. Later, we confirmed stereochemistry of

13

$\mathrm{k} \square 14 \mathrm{R}=\mathrm{THP}$

16

Scheme 2 Reagents and conditions: a, $\mathrm{Et}_{3} \mathrm{~N}, \mathrm{ClCO}_{2} \mathrm{Et}$, acetone, room temp., 15 h ; b, hexa-3,5-dien-1-ol 4, pyridine, $\mathrm{DMAP}^{2} \mathrm{CH}_{2} \mathrm{Cl}_{2}$, room temp.; c, $o-\mathrm{DCB}(2 \% \mathrm{w} / \mathrm{v}), 235{ }^{\circ} \mathrm{C}, 94 \mathrm{~h} ; \mathrm{d}, 10 \%$ aq., $\mathrm{NaOH}, \mathrm{MeOH}$, room temp. $3 \mathrm{~h} ; \mathrm{CH}_{2} \mathrm{~N}_{2} ; \mathrm{e}, \mathrm{LiAlH}_{4}, \mathrm{THF}$, room temp. $0.5 \mathrm{~h} ; \mathrm{f}, \mathrm{Ag}_{2} \mathrm{CO}_{3}-\mathrm{Celite}$, benzene, reflux 2 h ; g, aq. $\mathrm{K}_{2} \mathrm{CO}_{3}$, room temp. 1 h ; I_{2}, aq. KI , room temp., 12.5 h ; h, DBU, benzene, reflux, 1 h 40 min ; i, DHP, p-TsOH, room temp., 4 h ; j, DBU, benzene, reflux, $20 \mathrm{~h} ; \mathrm{k}, p-\mathrm{TsOH}, \mathrm{MeOH}, \mathrm{CH}_{2} \mathrm{Cl}_{2}$, room temp., $6 \mathrm{~h} ; 1$, Jones oxidation, acetone, $0^{\circ} \mathrm{C}, 15 \mathrm{~min}$

Fig. 1 Determination of the stereostructure of compounds 6 and 7
lactones 6 and 7 by conversion of compound 6 into known lactam 19^{15} (vide infra).

Next, hydrolysis of lactone 6 was attempted. Hydrolysis of compound 6 with methanolic aq. NaOH furnished hydroxy esters $8 \mathbf{8}$ and $\mathbf{8 b}$ in a $1: 1$ ratio, in which epimerization of C 8 a in substrate 6 easily occurred. Unfortunately, attempts at hydrolysis of the lactone without epimerization failed. Thus, reduction of lactone 6 with LiAlH_{4} in tetrahydrofuran (THF) at room temperature was performed to give a diol 9 in 97% yield. Although oxidation of diol 9 with Jones reagent or $\mathrm{NaBrO} \mathrm{O}_{2} \cdot 3 \mathrm{H}_{2} \mathrm{O}^{16}$ afforded a mixture of δ-lactones $\mathbf{6}$ and $\mathbf{1 0}$ along with many by-products, with Fétizon's reagent ${ }^{17}$ desired δ-lactone 10 was obtained as the sole product (98%).

Iodolactonization of lactone $\mathbf{1 0}$ seemed to be an effective method for introduction of functional groups on the C ring, and conversion into β (stereochemical)-hydroxy γ-lactam 23. Thus, compound 10 was transformed into iodo lactone 11 in 92% yield. The reaction of iodo lactone with 1,8 -diazabicyclo[5.4.0] undec-7-ene (DBU) gave unexpectedly, in 94\% yield, epoxy δ-lactone 12 instead of desired olefin 15. Epoxy δ-lactone 12 would be formed by intramolecular attack of the hydroxy group to the lactone ring of iodohydrin 11.

To retard the undesired reaction, the reaction of compound 11 was conducted with dihydropyran (DHP) to give a tetrahydro-pyran-2-yl ether 13 , which was readily dehydroiodated with DBU to furnish olefin 14. Furthermore, deprotection of ether 14 with p-TsOH in $\mathrm{CH}_{2} \mathrm{Cl}_{2}-\mathrm{MeOH}$ gave in 78% overall yield (from iodo lactone 11) δ-lactone alcohol 15, Jones oxidation of which in acetone afforded δ-lactonic acid 16 in 63% yield. \dagger

As mentioned above, we assumed stereochemistry of the δ lactone 6 to be cis. To confirm this assumption, conversion of lactone 16 into a known γ-lactam $19{ }^{15}$ was performed. Thus, compound 16 was transformed into an azide in the usual manner $\left(\mathrm{ClCO}_{2} \mathrm{Et}, \mathrm{Et}_{3} \mathrm{~N}\right.$; NaN_{3}, water) followed by Curtius rearrangement with benzyl alcohol in boiling toluene to give the benzyl carbamate 17 in 72% yield. Reductive debenzylation of carbamate 17 and successive acid treatment afforded amino ester 18, which was heated in EtOH for 10 h to furnish lactam 19 in 86% yield (Scheme 3). The ${ }^{1} \mathrm{H}$ NMR spectrum of synthetic lactam 19 was identical in all respects with that ${ }^{15}$ of an authentic specimen. Thus, compound 6 was determined to be a $4 \mathrm{a}, 8 \mathrm{a}-\mathrm{cis}$ -δ-lactone. Since γ-lactam 19 has been converted into α-lycorane 20 by Hill et al., ${ }^{15 a}$ a formal total synthesis of α-lycorane $\mathbf{2 0}$ was therefore newly accomplished.

For synthesis of (\pm)-lycorine, introduction of functional groups on the C ring in acid lactone 16 was the next important step. The tert-butyl carbamate 21 rather than the benzyl carbamate 17 seemed to be a potential candidate for transformation into functionalized γ-lactam 23 , because deprotection could easily occur. Treatment of acid 16 with diphenylphosphoryl azide (DPPA) ${ }^{18}$ and $\mathrm{Et}_{3} \mathrm{~N}$ in boiling
\dagger Attempted two-step transformation of alcohol 15 into δ-lactonic acid 16 via the corresponding aldehyde was unsuccessful, because conversion of the aldehyde into acid $\mathbf{1 6}$ under a variety of oxidation conditions was poor.

Scheme 3 Reagents and conditions: a, $\mathrm{ClCO}_{2} \mathrm{Et}, \mathrm{Et}_{3} \mathrm{~N}, 0^{\circ} \mathrm{C}, 0.5 \mathrm{~h} ; \mathrm{NaN}_{3}, 0^{\circ} \mathrm{C}, 3 \mathrm{~h} ; \mathrm{PhCH}_{2} \mathrm{OH}$, toluene, reflux, $9 \mathrm{~h} ; \mathrm{b}, 10 \% \mathrm{Pd}-\mathrm{C} / \mathrm{H} 2, \mathrm{MeOH}, \mathrm{room}$ temp., 1.5 h ; conc. $-\mathrm{H}_{2} \mathrm{SO}_{4}, \mathrm{MeOH}$, room temp., $15 \mathrm{~h} ; \mathrm{c}$, EtOH , reflux, $10 \mathrm{~h} ; \mathrm{d}, \mathrm{ClCO}_{2} \mathrm{Et}, 0^{\circ} \mathrm{C}, 0.5 \mathrm{~h} ; \mathrm{NaN}_{3}, 0^{\circ} \mathrm{C}, 3 \mathrm{~h} ; \mathrm{Bu}^{\text {to }} \mathrm{OH}$, reflux, 1.5 h or DPPA , $\mathrm{Et}_{3} \mathrm{~N} ; \mathrm{Bu}^{t} \mathrm{OH}$, reflux, 4 h ; e, TFA, $\mathrm{CH}_{2} \mathrm{Cl}_{2}$, room temp., 1 h ; f, $\mathrm{NaOMe}, \mathrm{MeOH}$, room temp., $3 \mathrm{~h} ; \mathrm{g}$, TBDMSCl, imidazole, DMF, room temp., 8 h ; $h, \mathrm{MCPBA}, \mathrm{CH}_{2} \mathrm{Cl}_{2}$, room temp., 42 h ; i, see Table 1; $\mathrm{Ac}_{2} \mathrm{O}$, py
$\mathrm{Bu}^{t} \mathrm{OH}$ gave carbamate $21 \ddagger$ in 79% yield. The reaction of carbamate 21 with trifluoroacetic acid (TFA) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ gave amine 22, which reacted with NaOMe in MeOH to furnish expected β (stereochemical)-hydroxy γ-lactam 23 in 98% yield.

Tsuda et al. ${ }^{4 a, b}$ have reported that epoxidation of $1 \alpha-$ trimethysiloxy-2,3-didehydrolycorane proceeded only from the β-face. This finding encouraged us to try stereoselective epoxidation of a β (stereochemical)-hydroxy γ-lactam derivative to lead to the corresponding β (stereochemical)-hydroxyα (stereochemical)-epoxy γ-lactam, Payne rearrangement of which could introduce hydroxy groups with stereochemistry similar to that of lycorine on the C ring. Thus, the tertbutyldimethylsilyl (TBDMS) group was chosen as a bulky protecting group in alcohol $\mathbf{2 3}$ for stereoselective epoxidation. The reaction of alcohol 23 with TBDMSCl and imidazole in dimethylformamide (DMF) gave silyl ether 24 in 98% yield, epoxidation of which with m-chloroperbenzoic acid (MCPBA) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ afforded only the α (stereochemical)-epoxy γ-lactam 25 in 85% yield, as expected. Stereochemistry of product 25 was determined by ${ }^{1} \mathrm{H}$ NMR (400 MHz) analysis. Both coupling constants, between $4-\mathrm{H}$ and $5-\mathrm{H}$, and between $5-\mathrm{H}$ and $6-\mathrm{H}$ were 4.4 Hz , whereas that between $7-\mathrm{H}$ and $7 \mathrm{a}-\mathrm{H}$ was 9.5 Hz . No spin-spin coupling between $6-\mathrm{H}$ and $7-\mathrm{H}$ was observed. From examination of the ${ }^{1} \mathrm{H}$ NMR spectrum coupled with Dreiding models, compound 25 was deduced to be an α (stereochemical)-epoxy γ-lactam, in which the cyclohexane ring exists in a boat conformation. This assumption was confirmed by X-ray crystallographic analysis (Fig. 2). ${ }^{19}$

Next, in order to rearrange the $5,6-\alpha$ (sterochemical)-epoxy γ-lactam 26 into the 4,5- β (stereochemical)-epoxy γ-lactam 27, a Payne rearrangement was carried out. Treatment of TBDMS-oxy- α-epoxy γ-lactam 25 with tetrabutylammonium fluoride (TBAF) in THF at room temperature for 30 min afforded a mixture of regioisomers 26 and 27, recrystallization of which
$\ddagger \delta$-Lactonic acid 16 was converted into the azide in the usual manner $\left(\mathrm{ClCO}_{2} \mathrm{Et}, \mathrm{Et}_{3} \mathrm{~N}\right.$; aq. $\left.\mathrm{NaN}_{3}\right)$, which was refluxed in $\mathrm{Bu}{ }^{\prime} \mathrm{OH}$ to furnish the tert-butyl carbamate 21 in 65% yield.

Fig. 2 X-Ray molecular structure of compound 25
from MeOH gave only the δ, ε-epoxide 26 , in 38% yield. However, separation of isomers 26 and 27 was easily performed after acetylation. As shown in Table 1, the reaction of acetate 28 with 5% aq. $\mathrm{K}_{2} \mathrm{CO}_{3}$ in MeOH at room temperature was the best method for conversion of compound 26 into its regioisomer 27. Thus, 29 was prepared from alcohol 23 in conventional procedures (silylation, epoxidation, deprotection, acetylation, base treatment and acetylation).
For introduction of a double bond at 4-5a positions on the C ring, the reaction of acetate 29 with diphenyl diselenide and $\mathrm{NaBH}_{4}{ }^{20}$ was investigated, and found to give phenylselanyl (PhSe) diol 31 in quantitative yield. After acetylation of diol 31, structure of diacetate 32 was determined by ${ }^{1} \mathrm{H}$ NMR analysis using an irradiation method: namely, irradiation of $6-\mathrm{H}$ or $5-\mathrm{H}$ changed the triplet signal for $5-\mathrm{H}$ or $6-\mathrm{H}$ to a doublet, showing that two acetoxy groups are vicinal. Thus, phenylselanylation of epoxide 29 was shown to occur at the 4 -position. Although oxidative dephenylselanylation of dihydro γ-lactam 31 with NaIO_{4} or $\mathrm{H}_{2} \mathrm{O}_{2}$ did not occur, the reaction of the corresponding diacetoxy γ-lactam 32 with aq. NaIO_{4} smoothly proceeded to give, in 88% yield, didehydro γ-lactam 33 bearing the same stereostructure as that concerning the C ring in lycorine (Scheme 4).
Finally, construction of the B ring was performed for the

Scheme 4 Reagents and conditions: a, $(\mathrm{PhSe})_{2}, \mathrm{NaBH}_{4}, \mathrm{EtOH}$, reflux, $15 \mathrm{~min} ; \mathrm{b}, \mathrm{Ac}_{2} \mathrm{O}$, py, room temp., 21 h ; c, NaIO_{4}, THF, aq. MeOH , $40^{\circ} \mathrm{C} .3 .5 \mathrm{~h}$
synthesis of lycorine by two routes; one was construction of the B ring followed by reduction of the γ-lactam (Route A) and the other was reduction of the γ-lactam followed by construction of the B ring (Route B) (Scheme 5).
For Route A, as attempts§ to cyclize compound $\mathbf{3 3}$ failed, the reaction of γ-lactam 32 with aq. $\mathrm{Na}_{2} \mathrm{CO}_{3}$ and 35% formalin followed by treatment with TFA in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ was performed to afford formation of the cyclization product 34. Oxidative elimination of the PhSe group in compound 34 under reaction conditions similar to those described for selenide 32 furnished
pentacycle 35 in 57% yield, the ${ }^{1} \mathrm{H}$ NMR spectrum of which was identical with that ${ }^{4 d}$ of an authentic sample. Since compound 35 has been converted into (\pm)-lycorine 1 by Sano et al., ${ }^{4 d}$ the present results constitute a formal total synthesis of lycorine 1.

A total synthesis of (\pm)-lycorine 1 was carried out according to Route B, though no unsaturated amine was employed as an intermediate. Reduction ${ }^{6}$ of γ-lactam 32 with $\mathrm{NaAlH}_{2}{ }^{-}$ $\left(\mathrm{OCH}_{2} \mathrm{CH}_{2} \mathrm{OCH}_{3}\right)_{2}\left(\text { Vitride }{ }^{\circledR}\right)^{21}$ in boiling toluene gave the corresponding amine, which was immediately subjected to Pictet-Spengler reaction ${ }^{22}$ using Eschenmoser's salt $\left(\mathrm{CH}_{2}=\mathrm{N}^{+}\right.$$\left.\mathrm{Me}_{2} \mathrm{I}^{-}\right)^{23}$ in THF to give pentacycle 36 in 44% yield. Finally, oxidative elimination of the PhSe group of compound 36 in a manner similar to that noted for compound 32 afforded (\pm)lycorine 1, the identification of which was performed after acetylation, by comparison (${ }^{1} \mathrm{H}$ NMR, IR, TLC) of (\pm)-di-oacetyllycorine 37 with (-)-di-o-acetyllycorine. Thus, a total synthesis of (\pm)-lycorine 1 was accomplished (Scheme 6).
In conclusion, new formal and total syntheses of (\pm)lycorine 1 were achieved by functionalization of the C ring followed by construction of the B ring.

Experimental

All mps were measured on a Büchi or a Yanagimoto (hot plate) melting point apparatus and are uncorrected. Unless otherwise noted, IR spectra were performed with a Hitachi 260-10 spectrometer for samples in CHCl_{3} solution, and ${ }^{1} \mathrm{H}$ NMR spectra were taken with a JEOL JMX-FX100 $(100 \mathrm{MHz})$ or a JEOL GSX-500 (500 MHz) spectrometer for samples in CDCl_{3} solution with tetramethylsilane as internal standard. J Values are given in Hz . Mass spectra were measured on a Hitachi M-80

- Reduction of selenide 32 with LiAlH_{4} gave a complex mixture.
§ 1,4-Elimination of allylic acetate in compound $\mathbf{3 3}$ occurred.

Scheme 5

Table 1 Payne rearrangement of epoxides $\mathbf{2 5}, 26$ and $\mathbf{2 8}^{a}$

Entry	Substrate	Base	Reaction temp. ($T /{ }^{\circ} \mathrm{C}$)	Reaction time (t / h)	Yield (\%) ${ }^{\text {b }}$		
					28	29	30
1	25	TBAF	$\mathrm{rt}^{\text {c }}$	0.5	77	11	d
2	25	TBAF	$\mathrm{rt}^{\text {c }}$	20	35	25	d
3	25	TBAF	40	8	30	26	d
4	26	NaH	40	9.5	10	61	5
5	26	NaH	reflux	9.5	d	21	35
6	26	KH	40	6.5	69	31	d
7	26	CaH_{2}	50	5	7	58	0
$8{ }^{\text {e }}$	28	5% aq. $\mathrm{K}_{2} \mathrm{CO}_{3}$	$\mathrm{rt}^{\text {c }}$	0.25	38	50	0
9^{e}	28	5% aq. $\mathrm{K}_{2} \mathrm{CO}_{3}$	$\mathrm{rt}^{\text {c }}$	3	5	61	0

[^0]

Scheme 6 Reagents and conditions: a, 35% aq. HCHO, sat. aq. $\mathrm{Na}_{2} \mathrm{CO}_{3}$, THF, room temp., 2 h ; TFA, $\mathrm{CH}_{2} \mathrm{Cl}_{2}$, room temp., 15 min ; b, NaIO , THF , aq. $\mathrm{MeOH}, 40^{\circ} \mathrm{C}, 2 \mathrm{~h} ; \mathrm{c}$, Vitride ${ }^{(9)}$, toluene, reflux, $0.5 \mathrm{~h} ; \mathrm{CH}_{2}=\mathrm{N}^{+} \mathrm{Me}_{2} \mathrm{I}^{-}$, THF , reflux, $1 \mathrm{~h} ; \mathrm{d}, \mathrm{NaIO}_{4}, \mathrm{THF}, \mathrm{aq} . \mathrm{MeOH}, 40^{\circ} \mathrm{C}, 10 \mathrm{~min} ; \mathrm{e}, \mathrm{Ac} \mathrm{A}_{2} \mathrm{O}, \mathrm{py}$, room temp., 24 h
or a JEOL JMS D-300 spectrometer. Organic phase extract solutions were dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ or MgSO_{4} except for those organic phases containing an amine ($\mathrm{K}_{2} \mathrm{CO}_{3}$). Removal of the solvent was carried out under reduced pressure. Column chromatography was performed on silica gel. Preparative TLC (PLC) was run on Merck 5744 or Merck 7730 plates. Light petroleum refers to the fraction with distillation range $35-45^{\circ} \mathrm{C}$

(E)-Hexa-3,5-dienyl $\mathbf{3}^{\prime}, 4^{\prime}$-methylenedioxycinnamate 5

To an ice-cold, stirred suspension of carboxylic acid $2^{12}(60 \mathrm{~g}$, $0.31 \mathrm{~mol})$ and $\mathrm{Et}_{3} \mathrm{~N}\left(56 \mathrm{~cm}^{3}, 0.4 \mathrm{~mol}\right)$ in acetone $\left(900 \mathrm{~cm}^{3}\right)$ was added $\mathrm{ClCO}_{2} \mathrm{Et}\left(15 \mathrm{~cm}^{3}, 0.155 \mathrm{~mol}\right)$. The mixture was stirred at $0^{\circ} \mathrm{C}$ for 1 h and at room temperature for 15 h . The precipitate was filtered off and washed with hexane to give anhydride $\mathbf{3}$ (70 $\mathrm{g})$ as crystals. To a mixture of anhydride $3(55 \mathrm{~g}, 0.15 \mathrm{~mol})$, 4 -(dimethylamino)pyridine (DMAP) ($6.1 \mathrm{~g}, 0.05 \mathrm{~mol}$), and pyridine ($60 \mathrm{~cm}^{3}, 0.75 \mathrm{~mol}$) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}\left(175 \mathrm{~cm}^{3}\right)$ was added a solution of diene alcohol $4^{13}(10 \mathrm{~g}, 0.1 \mathrm{~mol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}\left(25 \mathrm{~cm}^{3}\right)$ at room temperature, and the mixture was stirred for 18 h . After suction filtration to remove the precipitate, the filtrate was acidified with $10 \% \mathrm{HCl}$. Then, the new precipitate was filtered off, and the organic phase was separated. The organic phase was washed successively with 5% aq. KHCO_{3} and brine. Evaporation off of the solvent afforded a solid (42 g), which was recrystallized from hexane to furnish title compound $5(29 \mathrm{~g}$, 86% yield based on 4) as crystals; mp $59-60.5^{\circ} \mathrm{C}$ (from light petroleum); $\delta_{\mathrm{H}} 7.54$ ($1 \mathrm{H}, \mathrm{d}, J 16$, $\mathrm{ArCH}=\mathrm{CH}$), 6.86-7.04 (2 H , $\mathrm{m}, \mathrm{ArH} \times 2), 6.76(1 \mathrm{H}, \mathrm{d}, J 8, \mathrm{ArH}), 6.22(1 \mathrm{H}, \mathrm{d}, J 16$, $\mathrm{ArCH}=\mathrm{CH}), 6.06-6.36(2 \mathrm{H}, \mathrm{m}$, olefinic $\mathrm{H} \times 2)$, $5.96(2 \mathrm{H}, \mathrm{s}$, $\left.\mathrm{OCH}_{2} \mathrm{O}\right), 5.48-5.84(1 \mathrm{H}, \mathrm{m}$, olefinic H$), 4.90-5.22(2 \mathrm{H}, \mathrm{m}$, olefinic $\mathrm{H} \times 2)$, $4.22\left(2 \mathrm{H}, \mathrm{t}, J 7.1, \mathrm{OCH}_{2} \mathrm{CH}_{2}\right)$ and $2.48(2 \mathrm{H}, \mathrm{q}$, $J 7.1, \mathrm{OCH}_{2} \mathrm{CH}_{2}$); $v_{\max } / \mathrm{cm}^{-1} 1700 ; m / z 272\left(\mathrm{M}^{+}\right)$(Found: C, $70.5 ; \mathrm{H}, 5.9 . \mathrm{C}_{16} \mathrm{H}_{16} \mathrm{O}_{4}$ requires $\mathrm{C}, 70.57 ; \mathrm{H}, 5.92 \%$).
($4 \mathrm{a} R^{*}, 8 R^{*}, 8 \mathrm{a} R^{*}$)-8-($\mathbf{3}^{\prime}, 4^{\prime}$-Methylenedioxyphenyl)-3,4,4a,7,8ahexahydroisocoumarin 6 and ($\left.4 \mathrm{a} S^{*}, 8 R^{*}, 8 a R^{*}\right)$-8-($3^{\prime}, 4^{\prime}-$ methylenedioxyphenyl)-3,4,4a,7,8a-hexahydroisocoumarin 7
A solution of triene ester $5(2.0 \mathrm{~g}, 7.4 \mathrm{mmol})$ and hydroquinone $(0.040 \mathrm{~g}, 0.35 \mathrm{mmol})$ in o-dichlorobenzene (o-DCB) $\left(100 \mathrm{~cm}^{3}\right)$ in a sealed tube was heated at $235^{\circ} \mathrm{C}$ for 94 h under argon. The same reaction was repeated three times, independently. The four reaction mixtures were combined. Removal of the solvent gave a residue, which was purified by column chromatography and elution with ($1: 10$ and then $1: 7$) AcOEt-hexane to furnish epimers $6(6.88 \mathrm{~g}, 86.0 \%)$ and $7(0.383 \mathrm{~g}, 4.8 \%)$.
Compound 6; mp 128-129 ${ }^{\circ} \mathrm{C}\left(\right.$ from $\left.\mathrm{CHCl}_{3}-\mathrm{MeOH}\right) ; ~ \delta_{\mathrm{H}}(500$ $\mathrm{MHz}) 6.81(1 \mathrm{H}, \mathrm{d}, J 2, \mathrm{ArH}), 6.76(1 \mathrm{H}, \mathrm{dd}, J 2$ and 8 , ArH),
$6.73(1 \mathrm{H}, \mathrm{d}, J 8, \mathrm{ArH}), 6.05(1 \mathrm{H}, \mathrm{ddt}, J 2.5,4.5$ and $10,5-\mathrm{H}$), $5.93\left(2 \mathrm{H}, \mathrm{s}, \mathrm{OCH}_{2} \mathrm{O}\right), 5.63(1 \mathrm{H}, \mathrm{dd}, J 2$ and $10,6-\mathrm{H}), 4.24-4.30$ $\left(2 \mathrm{H}, \mathrm{m}, 3-\mathrm{H}_{2}\right), 3.81(1 \mathrm{H}, \mathrm{q}, J 3,8-\mathrm{H}), 2.68(1 \mathrm{H}, \mathrm{dd}, J 3$ and 7.5 , $8 \mathrm{a}-\mathrm{H}), 2.59(1 \mathrm{H}$, ddt, $J 3,6.8$ and $19,7-\mathrm{H}), 2.48\left(1 \mathrm{H}, \mathrm{br} \mathrm{s}, w_{\frac{1}{2}}\right.$ $14.5,4 \mathrm{a}-\mathrm{H}), 2.25(1 \mathrm{H}$, ddd, $J 2,4$ and $19,7-\mathrm{H}$), $1.99-2.06(1 \mathrm{H}$, $\mathrm{m}, 4-\mathrm{H}), 1.78(1 \mathrm{H}$, ddd, $J 3.5,4$ and $14.5,4-\mathrm{H}) ; v_{\max } / \mathrm{cm}^{-1} 1710$; $m / z 272\left(\mathrm{M}^{+}\right)$(Found: C, 70.7; H, 5.9. $\mathrm{C}_{16} \mathrm{H}_{16} \mathrm{O}_{4}$ requires C, 70.57 ; H, 5.92\%).

Compound 7; mp $151.5-152.5^{\circ} \mathrm{C}$ (from CHCl_{3}-hexane); $\delta_{\mathrm{H}}(500 \mathrm{MHz}) 6.75(1 \mathrm{H}, \mathrm{d}, J 11, \mathrm{ArH}), 6.70(1 \mathrm{H}, \mathrm{d}, J 2, \mathrm{ArH})$, $6.69(1 \mathrm{H}, \mathrm{dd}, J 2$ and $11, \mathrm{ArH}$), 5.92 and 5.91 (each $1 \mathrm{H}, \mathrm{d}, J 0.8$, together $\mathrm{OCH}_{2} \mathrm{O}$), $5.76(1 \mathrm{H}$, ddt, $J 2.5,5$ and $10,5-\mathrm{H}), 5.64$ (1 H, ddd, J 1.5, 4 and 10, 6-H), 4.36-4.39 ($2 \mathrm{H}, \mathrm{m}, 3-\mathrm{H}_{2}$), 3.01 ($\mathrm{H}, \mathrm{dt}, J 5$ and $11,8-\mathrm{H}), 2.78(1 \mathrm{H}, \mathrm{t}, J 11,8 \mathrm{a}-\mathrm{H}), 2.61(1 \mathrm{H}, \mathrm{dddt}$, $J 2.5,4,11.5$ and $21,4-\mathrm{H}), 2.31-2.43(2 \mathrm{H}, \mathrm{m}, 4 \mathrm{a}-\mathrm{and} 7-\mathrm{H})$, $2.12(1 \mathrm{H}$, dddt, $J 2.5,5,11.5$ and $18.5,7-\mathrm{H})$ and $1.69(1 \mathrm{H}$, ddd, $J 5,10$ and $21,4-\mathrm{H}) ; v_{\max } / \mathrm{cm}^{-1} 1740 ; m / z 272\left(\mathrm{M}^{+}\right)$(Found: $\mathrm{C}, 70.3 ; \mathrm{H}, 5.8 \%)$.

($3 R^{*}, 4 R^{*}, 5 R^{*}$)-3-(2-Hydroxyethyl)-4-hydroxymethyl-5-($\mathbf{3}^{\prime}, 4^{\prime}$ methylenedioxyphenyl)cyclohexene 9

To an ice-cold, stirred solution of ester $6(0.539 \mathrm{~g}, 1.95 \mathrm{mmol})$ in THF ($35 \mathrm{~cm}^{3}$) was added $\mathrm{LiAlH}_{4}(0.260 \mathrm{~g}, 6.84 \mathrm{mmol})$ in small portions. After being stirred at room temperature for 30 min , the reaction mixture was quenched with saturated aq. $\mathrm{Na}_{2} \mathrm{SO}_{4}$. The precipitate was filtered off and usual work-up of the filtrate gave a residue, which was subjected to column chromatography and elution with $(30: 1) \mathrm{CHCl}_{3}-\mathrm{MeOH}$ to afford title compound $9(0.525 \mathrm{~g}, 97.0 \%) ; \mathrm{mp} 114-115^{\circ} \mathrm{C}$ (from CHCl_{3}-hexane); δ_{H} $6.48-6.80(3 \mathrm{H}, \mathrm{m}, \mathrm{ArH} \times 3), 5.89\left(2 \mathrm{H}, \mathrm{s}, \mathrm{OCH}_{2} \mathrm{O}\right), 5.58-5.90$ ($2 \mathrm{H}, \mathrm{m}$, olefinic $\mathrm{H} \times 2$), $3.52-3.88\left(2 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2} \mathrm{OH}\right), 3.28-$ $3.48\left(2 \mathrm{H}, \mathrm{m}, \mathrm{CHCH}_{2} \mathrm{OH}\right)$ and $1.68-2.76(7 \mathrm{H}, \mathrm{m}) ; v_{\text {max }} / \mathrm{cm}^{-1}$ 3100-3650; m/z $276\left(\mathrm{M}^{+}\right)$(Found: C, 69.5; H, 7.4. $\mathrm{C}_{16} \mathrm{H}_{20} \mathrm{O}_{4}$ requires $\mathrm{C}, 69.59 ; \mathrm{H}, 7.30 \%$).

($4 \mathrm{a} R^{*}, 8 R^{*}, 8 \mathrm{a} R^{*}$)-8-(3',4'-Methylenedioxyphenyl)-3,4,4a,7,8,8a-

 hexahydroisochroman- $\mathbf{3}(\mathbf{1 H})$-one 10To a suspension of $\mathrm{AgNO}_{3}(57.8 \mathrm{~g}, 0.34 \mathrm{~mol})$ and Celite 545 (50 g) in distilled water ($340 \mathrm{~cm}^{3}$) was added a solution of $\mathrm{Na}_{2} \mathrm{CO}_{3}$ ($18.0 \mathrm{~g}, 0.17 \mathrm{~mol}$) in distilled water $\left(510 \mathrm{~cm}^{3}\right)$. After the mixture had been stirred at room temperature for 1 h , the yellow precipitate was filtered off and was washed with distilled water until the filtrate was neutral to litmus paper. This precipitate was suspended in benzene ($1020 \mathrm{~cm}^{3}$), and water was removed as an azeotropic mixture using a Dean-Stark apparatus to prepare Fétizon reagent. ${ }^{17}$ To the reagent was added a solution of diol $9(4.50 \mathrm{~g}, 16 \mathrm{mmol})$ in benzene ($100 \mathrm{~cm}^{3}$). After the
mixture had been refluxed for 2 h , the precipitate was removed by suction filtration. Evaporation of the filtrate gave lactone 10 ($4.22 \mathrm{~g}, 97.7 \%$), mp 139-140 ${ }^{\circ} \mathrm{C}$ (from CHCl_{3}-hexane); $\delta_{\mathrm{H}} 6.52-$ $6.80(3 \mathrm{H}, \mathrm{m}, \mathrm{ArH} \times 3)$, $5.92\left(2 \mathrm{H}, \mathrm{s}, \mathrm{OCH}_{2} \mathrm{O}\right), 5.48-6.01(2 \mathrm{H}$, m , olefinic $\mathrm{H} \times 2$), 3.87 and 4.12 (each 1 H , dd, $J 4.8$ and 12 , together 1- H_{2}) and $2.04-2.96\left(7 \mathrm{H}, \mathrm{m}, 4-\right.$ and $7-\mathrm{H}_{2}, 4 \mathrm{a}-, 8$ - and $8 \mathrm{a}-\mathrm{H}) ; v_{\max } / \mathrm{cm}^{-1} 1725 ; m / z 272\left(\mathrm{M}^{+}\right)$(Found: C, 70.7; H, 5.9. $\mathrm{C}_{16} \mathrm{H}_{16} \mathrm{O}_{4}$ requires C, $70.57 ; \mathrm{H}, 5.92 \%$).

($3 \mathrm{a} S^{*}, 4 S^{*}, 5 R^{*}, 7 S^{*}, 7 \mathrm{a} S^{*}$)-4-Hydroxymethyl-7-iodo-5-($\mathbf{3}^{\prime}, \mathbf{4}^{\prime}-$ methylenedioxyphenyl)-2,3,3a,4,5,6,7,7a-octahydrobenzofuran-2-one 11

A mixture of lactone $\mathbf{1 0}(13.8 \mathrm{~g}, 50.7 \mathrm{mmol})$ and $\mathrm{K}_{2} \mathrm{CO}_{3}(7.60 \mathrm{~g}$, 55.1 mmol) in water ($350 \mathrm{~cm}^{3}$) was refluxed for 1 h . After the mixture had cooled to room temperature, a solution of I_{2} (50.4 $\mathrm{g}, 0.2 \mathrm{~mol})$ and $\mathrm{KI}(83 \mathrm{~g}, 0.5 \mathrm{~mol})$ in water ($350 \mathrm{~cm}^{3}$) was added to the mixture, and the mixture was stirred for 12.5 h . The mixture was acidified with $3 \mathrm{~mol} \mathrm{dm}{ }^{-3} \mathrm{HCl}$ and extracted with AcOEt. The organic extract was washed successively with 10% aq. $\mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{3}$ and brine. Usual work-up of the organic phase gave γ-lactone $11(19.40 \mathrm{~g}, 91.9 \%)$ as an oil; δ_{H} 6.44-6.90 (3 H , $\mathrm{m}, \mathrm{ArH} \times 3)$, $5.92\left(2 \mathrm{H}, \mathrm{s}, \mathrm{OCH}_{2} \mathrm{O}\right), 4.82(1 \mathrm{H}, \mathrm{dd}, J 6.3$ and $9.2,7 \mathrm{a}-\mathrm{H}), 3.97(1 \mathrm{H}$, ddd, $J 4.3,9.2$ and $12.3,7-\mathrm{H}$), 2.80-3.56 (3 $\mathrm{H}, \mathrm{m})$ and $1.96-2.76(5 \mathrm{H}, \mathrm{m}) ; v_{\text {max }} / \mathrm{cm}^{-1} 3150-3650$ and 1775 ; $m / z 416\left(\mathrm{M}^{+}\right)$.

($3 \mathrm{aS} S^{*}, 4 S^{*}, 5 R^{*}, 7 S^{*}, 7 \mathrm{a} S^{*}$)-7-Iodo-5-($3^{\prime}, 4^{\prime}$-methylenedioxy-phenyl)-4-(tetrahydropyran-2-yloxymethyl)-2,3,3a,4,5,6,7,7a-octahydrobenzofuran-2-one 13

A mixture of iodolactone alcohol $11(0.0607 \mathrm{~g}, 0.15 \mathrm{mmol})$, DHP ($67 \times 10^{-3} \mathrm{~cm}^{3}, 0.73 \mathrm{mmol}$), and $p-\mathrm{TsOH} \cdot \mathrm{H}_{2} \mathrm{O}(0.0011 \mathrm{~g}$, $0.006 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}\left(2 \mathrm{~cm}^{3}\right)$ was stirred at room temperature for 4 h . The mixture was diluted with $\mathrm{Et}_{2} \mathrm{O}$ and washed successively with saturated aq. NaHCO_{3} and brine. Work-up of the organic phase in usual way gave an oily residue, which was purified by PLC with ($100: 1$) $\mathrm{CHCl}_{3}-\mathrm{MeOH}$ as developing solvent to afford tetrahydropyranyl ether $13(0.0631 \mathrm{~g}, 87 \%)$ as an oil; δ_{H} 6.46-6.76 ($3 \mathrm{H}, \mathrm{m}, \mathrm{ArH} \times 3$), $5.92(2 \mathrm{H}, \mathrm{s}$, $\left.\mathrm{OCH}_{2} \mathrm{O}\right), 4.77(1 \mathrm{H}, \mathrm{dd}, J 7.2$ and $10,7 \mathrm{a}-\mathrm{H}), 4.16-4.40(1 \mathrm{H}$, $\mathrm{m}, \mathrm{OCHO}$), 3.94 (1 H , ddd, $J 4.3,10$ and $12.5,7-\mathrm{H}$), 3.24-3.80 $(3 \mathrm{H}, \mathrm{m}), 2.80-3.17(2 \mathrm{H}, \mathrm{m}), 2.08-2.76(5 \mathrm{H}, \mathrm{m})$ and $1.20-1.92$ ($7 \mathrm{H}, \mathrm{m}$); $v_{\text {max }} / \mathrm{cm}^{-1} 1780 ; \mathrm{m} / \mathrm{z} 500\left(\mathrm{M}^{+}\right)$.

(3aS $\left.{ }^{*}, 4 S^{*}, 5 R^{*}, 7 \mathrm{a} R^{*}\right)-5-\left(3^{\prime}, 4^{\prime}-\right.$ Methylenedioxyphenyl)-4-(tetrahydropyran-2-yloxymethyl)-2,3,3a,4,5,7a-hexahydro-benzofuran-2-one 14

A solution of iodolactone $13(0.1698 \mathrm{~g}, 0.34 \mathrm{mmol})$ and DBU $\left(0.25 \mathrm{~cm}^{3}, 1.7 \mathrm{mmol}\right)$ in benzene ($8 \mathrm{~cm}^{3}$) was refluxed for 20 h . The mixture was diluted with $\mathrm{Et}_{2} \mathrm{O}$ and washed successively with 2% aq. HCl and brine. Usual work-up of the organic phase gave an oily. residue, which was purified by column chromatography and elution with ($100: 5: 1$) benzene-AcOEtMeOH to afford unsaturated lactone $14(0.1243 \mathrm{~g}, 98 \%)$ as an oil; $\delta_{\mathrm{H}} 6.46-6.80(3 \mathrm{H}, \mathrm{m}, \mathrm{ArH} \times 3)$, $5.93\left(2 \mathrm{H}, \mathrm{s}, \mathrm{OCH}_{2} \mathrm{O}\right), 5.79$ ($2 \mathrm{H}, \mathrm{d}, J 1.6$, olefinic $\mathrm{H} \times 2$), $5.08-5.22(1 \mathrm{H}, \mathrm{m}, \mathrm{OCHO}), 4.43$ ($\left.1 \mathrm{H}, \mathrm{brs}, w_{1} 5,7 \mathrm{a}-\mathrm{H}\right), 2.92-3.92(5 \mathrm{H}, \mathrm{m}), 2.60(1 \mathrm{H}, \mathrm{d}, J 5), 2.49$ ($1 \mathrm{H}, \mathrm{dd}, J 1.6$ and 4.8), 1.92-2.32 ($1 \mathrm{H}, \mathrm{m}$) and 1.32-1.84 (5 H , m); $v_{\max } / \mathrm{cm}^{-1} 1760 ; m / z 372\left(\mathrm{M}^{+}\right)$; HRMS (Found: M^{+}, 372.1563. $\mathrm{C}_{21} \mathrm{H}_{24} \mathrm{O}_{6}$ requires $\mathrm{M}, 372.1571$).

($3 \mathrm{aS}{ }^{*}, 4 S^{*}, 5 R^{*}, 7 \mathrm{a} R^{*}$)-4-Hydroxymethyl-5-($\mathbf{3}^{\prime}, 4^{\prime}$-methylene-

 dioxyphenyl)-2,3,3a,4,5,7a-hexahydrobenzofuran-2-one 15 A solution of tetrahydropyranyl ether $14(2.60 \mathrm{~g}, 7.0 \mathrm{mmol})$ and $p-\mathrm{TsOH} \cdot \mathrm{H}_{2} \mathrm{O}(0.310 \mathrm{~g}, 1.6 \mathrm{mmol})$ in a mixture of $\mathrm{CH}_{2} \mathrm{Cl}_{2}(40$ cm^{3}) and $\mathrm{MeOH}\left(40 \mathrm{~cm}^{3}\right)$ was stirred at room temperature for 5 h . After removal of the solvent, the product was taken up in CHCl_{3}. Work-up of the organic phase in the usual way afforded the hydroxy compound $15(1.85 \mathrm{~g}, 92 \%), \mathrm{mp} 139-140^{\circ} \mathrm{C}$ (from $\left.\mathrm{Et}_{2} \mathrm{O}\right) ; \delta_{\mathrm{H}} 6.48-6.80(3 \mathrm{H}, \mathrm{m}, \mathrm{ArH} \times 3)$, $5.92\left(2 \mathrm{H}, \mathrm{s}, \mathrm{OCH}_{2} \mathrm{O}\right)$, $5.79(2 \mathrm{H}, \mathrm{s}$, olefinic $\mathrm{H} \times 2), 5.14(1 \mathrm{H}, \mathrm{ddd}, J 0.8,2.4$ and$7.5,7 \mathrm{a}-\mathrm{H}), 3.63$ [$1 \mathrm{H}, \mathrm{dd}, J 4$ and $10.5, \mathrm{CH}(\mathrm{H}) \mathrm{OH}], 3.44$ [1 $\mathrm{H}, \mathrm{dd}, J 4$ and $10.5, \mathrm{CH}(H) \mathrm{OH}], 3.24(1 \mathrm{H}, \mathrm{dd}, J 2.5$ and $10.5), 3.08(1 \mathrm{H}, \mathrm{dd}, J 4$ and 7.5$), 2.58(1 \mathrm{H}, \mathrm{d}, J 1), 2.48(1$ $\mathrm{H}, \mathrm{d}, J 1)$ and $1.84-2.17(1 \mathrm{H}, \mathrm{m}) ; v_{\text {max }} / \mathrm{cm}^{-1} 3450$ and 1760 ; $m / z 288\left(\mathrm{M}^{+}\right)$(Found: C, 66.4; H, 5.5. $\mathrm{C}_{16} \mathrm{H}_{16} \mathrm{O}_{5}$ requires C, 66.66; H, 5.59\%).

($3 \mathrm{aS} S^{*}, 4 S^{*}, 5 R^{*}, 7 \mathrm{a} R^{*}$)-5-($\mathbf{3}^{\prime}, 4^{\prime}$-Methylenedioxyphenyl)-2-oxo-2,3,3a,4,5,7a-octahydrobenzofuran-4-carboxylic acid 16

To an ice-cold, stirred solution of alcohol $15(0.310 \mathrm{~g}, 1.08$ mmol) in acetone ($14 \mathrm{~cm}^{3}$) was added $2 \mathrm{~mol} \mathrm{dm}{ }^{-3}$ Jones reagent $\left(0.54 \mathrm{~cm}^{3}, 1.08 \mathrm{mmol}\right)$. After the mixture had been stirred for 15 min , cold water was added. The mixture was extracted with AcOEt. The organic phase was extracted with saturated aq. NaHCO_{3}. The aqueous phase was acidified with conc. HCl , and extracted with CHCl_{3}. Usual work-up of the organic phase afforded acid $16(0.2045 \mathrm{~g}, 63 \%)$, mp 208-209 ${ }^{\circ} \mathrm{C}$ (from MeOH); $\delta_{\mathrm{H}} 6.52-6.80(3 \mathrm{H}, \mathrm{m}, \mathrm{ArH} \times 3)$, $5.90\left(2 \mathrm{H}, \mathrm{s}, \mathrm{OCH}_{2} \mathrm{O}\right), 5.84$ $(2 \mathrm{H}, \mathrm{s}$, olefinic $\mathrm{H} \times 2), 5.20(1 \mathrm{H}$, ddd, $J 1.5,2.6$ and $5,7 \mathrm{a}-\mathrm{H})$, $3.64-3.86(1 \mathrm{H}, \mathrm{m}, 5-\mathrm{H}), 3.00-3.36(1 \mathrm{H}, \mathrm{m}, 4-\mathrm{H})$ and $2.28-2.96$ $\left(3 \mathrm{H}, \mathrm{m}, 3 \mathrm{a}-\mathrm{H}\right.$ and $\left.3-\mathrm{H}_{2}\right) ; v_{\max } / \mathrm{cm}^{-1} 1770$ and $1705 ; \mathrm{m} / \mathrm{z} 302$ $\left(\mathrm{M}^{+}\right)$(Found: C, 63.5; H, 4.7. $\mathrm{C}_{16} \mathrm{H}_{14} \mathrm{O}_{6}$ requires C, 63.57; $\mathrm{H}, 4.67 \%$).
(3a $S^{*}, 4 S^{*}, 5 S^{*}, 7 \mathrm{a} R^{*}$)-Benzyl 5-($3^{\prime}, 4^{\prime}$-methylenedioxyphenyl)-2-oxo-2,3,3a,4,5,7a-hexahydrobenzofuran-4-carbamate 17
To an ice-cold, stirred solution of δ-lactonic acid $16(0.0426 \mathrm{~g}$, $0.14 \mathrm{mmol})$ and $\mathrm{Et}_{3} \mathrm{~N}\left(0.026 \mathrm{~cm}^{3}, 0.18 \mathrm{mmol}\right)$ in acetone $\left(3 \mathrm{~cm}^{3}\right)$ was added dropwise $\mathrm{ClCO}_{2} \mathrm{Et}\left(0.013 \mathrm{~cm}^{3}, 0.18 \mathrm{mmol}\right)$. After this mixture had been stirred for 30 min , aq. $\mathrm{NaN}_{3}(0.012 \mathrm{~g}, 0.18$ mmol in $0.5 \mathrm{~cm}^{3}$) was added to the mixture and the whole was stirred for 3 h . The reaction was quenched with cold water, and the mixture was extracted with $\mathrm{Et}_{2} \mathrm{O}$. The extract was washed with brine, and evaporated to give a residue, which was refluxed in a mixture of toluene ($2 \mathrm{~cm}^{3}$) and benzyl alcohol $\left(0.1 \mathrm{~cm}^{3}\right)$ for 9 h . Evaporation off of the solvent afforded an oily residue, which was purified by column chromatography with $(50: 1)$ $\mathrm{CHCl}_{3}-\mathrm{MeOH}$ as eluent to furnish carbamate $17(0.0412 \mathrm{~g}$, 72%) as an oil; $\delta_{\mathrm{H}} 7.31(5 \mathrm{H}, \mathrm{br} \mathrm{s}, \mathrm{Ph}), 5.93\left(2 \mathrm{H}, \mathrm{s}, \mathrm{OCH}_{2} \mathrm{O}\right)$, 5.90-6.30 ($2 \mathrm{H}, \mathrm{m}$, olefinic $\mathrm{H} \times 2$), $5.03\left(2 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{2} \mathrm{Ph}\right), 4.75-$ $5.10(2 \mathrm{H}, \mathrm{m}, \mathrm{NH}, 7 \mathrm{a}-\mathrm{H}), 3.95-4.25(1 \mathrm{H}, \mathrm{m}, 5-\mathrm{H})$ and $3.75-3.60$ ($1 \mathrm{H}, \mathrm{m}, 4-\mathrm{H}$); $v_{\text {max }} / \mathrm{cm}^{-1} 3420,1775$ and $1715 ; m / z 407\left(\mathrm{M}^{+}\right)$; HRMS (Found: M^{+}, 407.1368. $\mathrm{C}_{23} \mathrm{H}_{21} \mathrm{NO}_{6}$ requires M , 407.1368).
$\left(3 \mathrm{a} S^{*}, 7 \mathrm{a} S^{*}, 7 \mathrm{a} S^{*}\right)-7-\left(3^{\prime}, 4^{\prime}-M e t h y l e n e d i o x y p h e n y l\right)-3 \mathrm{a}, 4,5,6,7,7 \mathrm{a}-$ hexahydroindolin-2-one 19
A suspension of the benzyl carbamate $17(0.0689 \mathrm{~g}, 0.17 \mathrm{mmol})$ and $10 \% \mathrm{Pd}-\mathrm{C}(0.040 \mathrm{~g})$ in $\mathrm{MeOH}\left(3 \mathrm{~cm}^{3}\right)$ was stirred for 1 h 50 min under H_{2}. After the catalyst had been filtered off, evaporation of the filtrate afforded crystals $(0.0462 \mathrm{~g}, 98 \%)$. A solution of these crystals ($0.042 \mathrm{~g}, 0.15 \mathrm{mmol}$) in $\mathrm{MeOH}\left(3 \mathrm{~cm}^{3}\right)$ was stirred with a catalytic amount of conc. $\mathrm{H}_{2} \mathrm{SO}_{4}$ at room temperature for 15 h . The mixture was diluted with CHCl_{3} and extracted with $10 \% \mathrm{HCl}$. The aqueous phase was made alkaline with NaHCO_{3} (powder), and extracted with CHCl_{3}. Usual work-up of the organic extract gave ($1 S^{*}, 2 R^{*}, 3 S^{*}$)-methyl 2-amino-3-($3^{\prime}, 4^{\prime}$-methylenedioxyphenyl)cyclohexaneacetate $\mathbf{1 8}$ $(0.0328 \mathrm{~g}, 74 \%)$ as an oil; $\delta_{\mathrm{H}} 5.72\left(2 \mathrm{H}, \mathrm{s}, \mathrm{OCH}_{2} \mathrm{O}\right)$ and $3.57(3 \mathrm{H}$, $\left.\mathrm{s}, \mathrm{CO}_{2} \mathrm{Me}\right) ; v_{\text {max }} / \mathrm{cm}^{-1} 3350$ and 1720 .

A solution of amino ester $18(0.0328 \mathrm{~g}, 0.11 \mathrm{mmol})$ in EtOH ($2 \mathrm{~cm}^{3}$) was refluxed for 10 h . Removal of the solvent gave a residue, which was purified by column chromatography with ($40: 1$) $\mathrm{CHCl}_{3}-\mathrm{MeOH}$ as eluent to furnish compound 19 $(0.0250 \mathrm{~g}, 86 \%), \mathrm{mp} 192.5-193.5^{\circ} \mathrm{C}$ (from CHCl_{3}-hexane) (lit., $\left.{ }^{15 b} 191.5-192.5^{\circ} \mathrm{C}\right)$; $\delta_{\mathrm{H}} 6.52-6.80(3 \mathrm{H}, \mathrm{m}, \mathrm{ArH} \times 3), 5.91$ $\left(2 \mathrm{H}, \mathrm{s}, \mathrm{OCH}_{2} \mathrm{O}\right), 5.54\left(1 \mathrm{H}, \mathrm{br} \mathrm{s}, w_{\frac{1}{2}} 8.6, \mathrm{NH}\right), 3.40(1 \mathrm{H}, \mathrm{dd}$, $J 7$ and $10,7 \mathrm{a}-\mathrm{H}), 2.52-2.96(1 \mathrm{H}, \mathrm{m}, 7-\mathrm{H}), 2.06-2.20(2 \mathrm{H}$, $\left.\mathrm{m}, 3-\mathrm{H}_{2}\right)$ and $1.16-2.96\left(7 \mathrm{H}, \mathrm{m}, 3 \mathrm{a}-\mathrm{H}\right.$, and $4-$, $\left.5-\mathrm{and} 6-\mathrm{H}_{2}\right)$; $v_{\text {max }} / \mathrm{cm}^{-1} 3420$ and 1690; m/z $259\left(\mathrm{M}^{+}\right.$); HRMS (Found: M^{+},

Table 2 Crystal data for compound 25

Compound	25
Formula, M_{r}	$\mathrm{C}_{21} \mathrm{H}_{29} \mathrm{NO}_{5} \mathrm{Si}, 403.6$
Crystal system	Monoclinic 2
Space group, Z	$P 2_{1} / n, 4$
Lattice constant	
$a(\AA)$	$22.937(12)$
$b(\AA)$	$6.957(7)$
$c(\AA)$	$14.406(15)$
$\beta\left({ }^{\circ}\right)$	$111.62(5)$
$V\left(\AA^{3}\right)$	2137
$D_{\text {calc }}\left(\mathrm{g} \mathrm{cm}^{-1}\right)$	1.254

259.1208. $\mathrm{C}_{15} \mathrm{H}_{17} \mathrm{NO}_{3}$ requires M, 259.1207). ${ }^{1} \mathrm{H}$ NMR spectral data of compound 19 were identical with those ${ }^{15}$ of an authentic specimen.

($3 \mathrm{a} S^{*}, 4 S^{*}, 5 S^{*}, 7 \mathrm{aR}{ }^{*}$)-tert-Butyl 5-($\mathbf{3}^{\prime}, 4^{\prime}$-methylene-dioxyphenyl)-2-0xo-2,3,3a,4,5,7a-hexahydrobenzofuran-4carbamate 21

A solution of δ-lactonic acid $16(0.4455 \mathrm{~g}, 1.47 \mathrm{mmol}), \mathrm{Et}_{3} \mathrm{~N}$ $(0.1561 \mathrm{~g}, 1.54 \mathrm{mmol})$, and DPPA ${ }^{18}(0.4080 \mathrm{~g}, 1.48 \mathrm{mmol})$ in $\mathrm{Bu} \mathrm{O}^{t} \mathrm{OH}\left(18 \mathrm{~cm}^{3}\right)$ was refluxed for 4 h . Evaporation off of the solvent gave a residue, which was taken up in AcOEt. The organic phase was washed successively with $5 \% \mathrm{HCl}$, water, saturated aq. NaHCO_{3} and brine. Evaporation off of the solvent gave title carbamate $21(0.4328 \mathrm{~g}, 78.6 \%$), mp 213-215 ${ }^{\circ} \mathrm{C}$ (from CHCl_{3}-hexane); $\delta_{\mathrm{H}} 6.50-6.80(3 \mathrm{H}, \mathrm{m}$, $\mathrm{ArH} \times 3), 5.94-6.28(2 \mathrm{H}, \mathrm{m}$, olefinic $\mathrm{H} \times 2), 5.92(2 \mathrm{H}, \mathrm{s}$, $\left.\mathrm{OCH}_{2} \mathrm{O}\right), 4.82-4.98(1 \mathrm{H}, \mathrm{m}, 7 \mathrm{a}-\mathrm{H}), 4.62(1 \mathrm{H}, \mathrm{d}, J 10, \mathrm{NH})$, $3.92-4.12(1 \mathrm{H}, \mathrm{m}, 5-\mathrm{H}), 3.48(1 \mathrm{H}, \mathrm{t}, J 4,4-\mathrm{H}), 2.72-2.98(1 \mathrm{H}$, $\mathrm{m}, 3 \mathrm{a}-\mathrm{H}), 2.48-2.62\left(2 \mathrm{H}, \mathrm{m}, 3-\mathrm{H}_{2}\right)$ and $1.40\left(9 \mathrm{H}, \mathrm{s}, \mathrm{Bu}^{t}\right)$; $v_{\max } / \mathrm{cm}^{-1} 3425,1775$ and $1700 ; m / z 373\left(\mathrm{M}^{+}\right)$(Found: C, 64.1; $\mathrm{H}, 6.0 ; \mathrm{N}, 3.7 . \mathrm{C}_{20} \mathrm{H}_{23} \mathrm{NO}_{6}$ requires $\mathrm{C}, 64.33 ; \mathrm{H}, 6.21 ; \mathrm{N}$, 3.75%).

($3 \mathrm{a} S^{*}, 4 S^{*}, 5 S^{*}, 7 \mathrm{a} R^{*}$)-4-Amino-5-($3^{\prime}, 4^{\prime}$-methylenedioxyphenyl)-

 2,3,3a,4,5,7a-hexahydrobenzofuran-2-one 22A solution of carbamate $21(0.4909 \mathrm{~g}, 1.3 \mathrm{mmol})$ and TFA ($8.4 \mathrm{~cm}^{3}$) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}\left(25 \mathrm{~cm}^{3}\right.$) was stirred at room temperature for 1 h . The mixture was diluted with CHCl_{3} and extracted with $10 \% \mathrm{HCl}$. The aqueous extract was made alkaline with NaHCO_{3} (powder), and extracted with CHCl_{3}. Usual work-up of the organic phase furnished compound $\mathbf{2 2}$ $(0.3528 \mathrm{~g}, 98 \%), \mathrm{mp} 139-140{ }^{\circ} \mathrm{C}$ (from MeOH); δ_{H} 6.54-6.82 $(3 \mathrm{H}, \mathrm{m}, \mathrm{ArH} \times 3)$, $5.93\left(2 \mathrm{H}, \mathrm{s}, \mathrm{OCH}_{2} \mathrm{O}\right), 5.80-5.96(2 \mathrm{H}, \mathrm{m}$, olefinic $\mathrm{H} \times 2$), $5.11(1 \mathrm{H}$, ddd, $J 1.2,2.8$ and $6.8,7 \mathrm{a}-\mathrm{H})$, $2.80-3.28(3 \mathrm{H}, \mathrm{m}), 2.40-2.64(2 \mathrm{H}, \mathrm{m})$ and $1.32\left(2 \mathrm{H}, \mathrm{br} \mathrm{s}, w_{\frac{1}{2}}\right.$ 4, NH_{2}); $v_{\text {max }} / \mathrm{cm}^{-1} 3350$ and $1770 ; m / z 273\left(\mathrm{M}^{+}\right)$(Found: C, 65.8; H, 5.4; $\mathrm{N}, 5.1 . \mathrm{C}_{15} \mathrm{H}_{15} \mathrm{NO}_{4}$ requires C, 65.92; H, 5.53; $\mathrm{N}, 5.13 \%$).

($3 \mathrm{aS}{ }^{*}, \mathbf{4 R} R^{*}, 7 S^{*}, 7 \mathrm{aS} \mathbf{S}^{*}$)-4-Hydroxy-7-(3',4'-methylenedioxy-phenyl)-3a,4,7,7a-tetrahydroindolin-2-one 23

A solution of amine $22(0.3488 \mathrm{~g}, 1.28 \mathrm{mmol})$ and NaOMe ($0.1077 \mathrm{~g}, 1.90 \mathrm{mmol}$) in $\mathrm{MeOH}\left(25 \mathrm{~cm}^{3}\right)$ was stirred at room temperature for 3 h . Evaporation off of the solvent left a residue, which was taken up in CHCl_{3}. Usual work-up of the organic phase afforded lactam 23 ($0.3404 \mathrm{~g}, 97.6 \%$), mp 147$148.5^{\circ} \mathrm{C}$ (from AcOEt); $\delta_{\mathrm{H}} 6.56-6.88(3 \mathrm{H}, \mathrm{m}, \mathrm{ArH} \times 3$), 6.15 (1 H , ddd, $J 2.6,4$ and 10 , olefinic H), $6.00\left(2 \mathrm{H}, \mathrm{s}, \mathrm{OCH}_{2} \mathrm{O}\right)$, $5.92\left(1 \mathrm{H}, \mathrm{dd}, J 4\right.$ and 10 , olefinic H), $5.70\left(1 \mathrm{H}, \mathrm{br} \mathrm{s}, w_{\frac{1}{2}} 10\right.$, NH), 4.48-4.68 ($1 \mathrm{H}, \mathrm{m}, 4-\mathrm{H}$), $3.68(1 \mathrm{H}, \mathrm{t}, J 8,7 \mathrm{a}-\mathrm{H}), 3.28-3.52$ $(1 \mathrm{H}, \mathrm{m}, 7-\mathrm{H})$ and $2.26-3.16\left(3 \mathrm{H}, \mathrm{m}, 3-\mathrm{H}_{2}\right.$ and $\left.3 \mathrm{a}-\mathrm{H}\right) ; v_{\text {max }} / \mathrm{cm}^{-1}$, 3420 and 1690; m/z $273\left(\mathrm{M}^{+}\right)$(Found: C, 65.8; H, 5.6; N, 5.2. $\mathrm{C}_{15} \mathrm{H}_{15} \mathrm{NO}_{4}$ requires C, $65.92 ; \mathrm{H}, 5.53 ; \mathrm{N}, 5.13 \%$).

[^1]TBDMSCl $(0.4545 \mathrm{~g}, 3.15 \mathrm{mmol})$ and imidazole $(0.4526 \mathrm{~g}$, 6.66 mmol) in DMF ($10 \mathrm{~cm}^{3}$) was stirred at room temperature for 8 h . Removal of the solvent afforded a residue, which was taken up in CHCl_{3}. The organic phase was washed successively with $1 \% \mathrm{HCl}$ water and brine. Evaporation off of the solvent gave compound $24(0.5868 \mathrm{~g}, 98.2 \%), \mathrm{mp} 158-159^{\circ} \mathrm{C}$ (from $\mathrm{Et}_{2} \mathrm{O}$-hexane); $\delta_{\mathrm{H}} 6.56-6.86(3 \mathrm{H}, \mathrm{m}, \mathrm{ArH} \times 3), 6.06(1 \mathrm{H}$, ddd, $J 2.8,4$ and 10.4 , olefinic H), $5.98\left(2 \mathrm{H}, \mathrm{s}, \mathrm{OCH}_{2} \mathrm{O}\right), 5.85(1 \mathrm{H}$, dd, $J 3.2$ and 10.4 , olefinic H), $5.78\left(1 \mathrm{H}, \mathrm{br} \mathrm{s}, w_{\frac{1}{2}} 4, \mathrm{NH}\right), 4.50(1$ $\mathrm{H}, \mathrm{brt}, J 4.3,4-\mathrm{H}), 3.32-3.76(2 \mathrm{H}, \mathrm{m}, 7-\mathrm{and} 7 \mathrm{a}-\mathrm{H}), 2.72-3.06$ $(1 \mathrm{H}, \mathrm{m}, 3 \mathrm{a}-\mathrm{H}), 2.18-2.64\left(2 \mathrm{H}, \mathrm{m}, 3-\mathrm{H}_{2}\right), 0.91\left(9 \mathrm{H}, \mathrm{s}, \mathrm{Bu}^{t}\right)$ and 0.10 and 0.09 (each $3 \mathrm{H}, \mathrm{s}, \mathrm{SiMe}_{2}$); $v_{\text {max }} / \mathrm{cm}^{-1} 3425$ and 1695 ; $m / z 387\left(\mathrm{M}^{+}\right)$(Found: C, 64.75; H, 7.5; N, 3.6. $\mathrm{C}_{21} \mathrm{H}_{29} \mathrm{NO}_{4} \mathrm{Si}$ requires $\mathrm{C}, 65.08 ; \mathrm{H}, 7.54 ; \mathrm{N}, 3.61 \%)$.

(3aS*,4S* $\left.\mathbf{5 S} \mathbf{S}^{*}, 6 S^{*}, 7 S^{*}, 7 \mathrm{a} R^{*}\right)$-4-(tert-Butyldimethylsiloxy)-5,6-epoxy-7-($\mathbf{3}^{\prime}, \mathbf{4}^{\prime}$-methylenedioxyphenyl)-3a, 4,5,6,7,7a-

 hexahydroindolin-2-one 25A solution of compound $24(0.5858 \mathrm{~g}, 1.52 \mathrm{mmol})$ and MCPBA ($0.5210 \mathrm{~g}, 3.02 \mathrm{mmol}$) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}\left(25 \mathrm{~cm}^{3}\right)$ was stirred at room temperature for 42 h (the reaction was monitored by GLC). The mixture was washed successively with 10% aq. $\mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{3}$, water, saturated aq. NaHCO_{3} and brine. Removal of the solvent left a residue, which was purified by column chromatography with CHCl_{3} as eluent to furnish epoxide $25(0.5161 \mathrm{~g}, 84.8 \%)$, mp $145-145.5^{\circ} \mathrm{C}$ (from AcOEt-hexane); $\delta_{\mathrm{H}}(400 \mathrm{MHz}) 6.86(1 \mathrm{H}$, d, $J 1.8, \mathrm{ArH}), 6.80(1 \mathrm{H}, \mathrm{d}, J 7.7, \mathrm{ArH}), 6.74(1 \mathrm{H}, \mathrm{dd}, J 1.8$ and 7.7, ArH), $5.98\left(2 \mathrm{H}, \mathrm{s}, \mathrm{OCH}_{2} \mathrm{O}\right), 5.29(1 \mathrm{H}, \mathrm{br} \mathrm{s}, \mathrm{NH}), 4.39$ $(1 \mathrm{H}, \mathrm{t}, J 4.4,4-\mathrm{H}), 3.78(1 \mathrm{H}, \mathrm{t}, J 9.5,7 \mathrm{a}-\mathrm{H}), 3.32(1 \mathrm{H}, \mathrm{t}, J$ $4.4,5-\mathrm{H}), 3.28(1 \mathrm{H}, \mathrm{d}, J 4.4,6-\mathrm{H}), 3.21(1 \mathrm{H}, \mathrm{d}, J 9.5,7-\mathrm{H})$, $2.79(1 \mathrm{H}, \mathrm{m}, 3 \mathrm{a}-\mathrm{H}), 2.56(1 \mathrm{H}, \mathrm{dd}, J 6.6$ and $17.2,3-\mathrm{H}), 2.37$ $(1 \mathrm{H}, \mathrm{dd}, J 11.4$ and $17.2,3-\mathrm{H}), 0.96(6 \mathrm{H}, \mathrm{s}, \mathrm{Me} \times 2)$ and $0.16\left(9 \mathrm{H}, \mathrm{s}, \mathrm{Bu}^{1}\right) ; v_{\text {max }} / \mathrm{cm}^{-1} 3420 ; m / z 403\left(\mathrm{M}^{+}\right)$(Found: C, 62.7; H, 7.3; $\mathrm{N}, 3.5 . \mathrm{C}_{21} \mathrm{H}_{29} \mathrm{NO}_{5} \mathrm{Si}$ requires C, $62.50 ; \mathrm{H}, 7.24$; $\mathrm{N}, 3.47 \%$).

X-Ray crystallographic analysis of TBDMS-oxy-epoxy γ-lactam 25

The X-ray study was carried out as follows. Intensities were measured on a Philips PW 1100 diffractometer using graphitemonochromated $\mathrm{Cu}-\mathrm{K} \alpha$ radiation. A total of 2344 reflections were measured as above the $2 \sigma(I)$ level out of 3649 reflections within the 2θ range $6-142^{\circ}$. The crystal structure was determined by direct methods and the atomic parameters were refined by the block-diagonal-matrix least-squares method to an R-value of 0.11 . Some of the hydrogen atoms were included in the refinement with isotropic temperature factors but those which belong to the two methyl groups and to the tertiary butyl group bonded to silicon atom were not included because these groups exhibited very large anisotropic thermal deviations. This may be the consequence of some kind of disorder, possibly a rotational disorder about the bond including the silicon atom. The rather large value of R may result from the disorder. Crystal data are summarized in Table 2 and the PLUTO ${ }^{19}$ drawing of the structure is shown in Fig. 2. Positional parameters are summarized in Table 3."
($3 \mathrm{a} S^{*}, 4 S^{*}, 5 R^{*}, 6 S^{*}, 7 S^{*}, 7 \mathrm{a} R^{*}$)-5,6-Epoxy-4-hydroxy-7-(3', $\mathbf{4}^{\prime}-$ methylenedioxyphenyl)-3a,4,5,6,7,7a-hexahydroindolin-2-one 26 A solution of epoxide $25(0.3852 \mathrm{~g}, 0.96 \mathrm{mmol})$ and TBAF (1 $\mathrm{mol} \mathrm{dm}{ }^{-3}$ in THF; $2.87 \mathrm{~cm}^{3}$) in THF ($9 \mathrm{~cm}^{3}$) was stirred at room temperature for 30 min . Removal of the solvent afforded an oily residue, which was taken up in AcOEt. Usual work-up of the organic phase furnished a solid, which was recrystallized from $\mathrm{MeOH}(2 \times)$ to afford the alcohol $26(0.1046 \mathrm{~g}, 38 \%), \mathrm{mp}$ 193-

[^2]Table 3 Positional parameters for compound 25

No.	Atom	$10^{4} X$	$10^{4} Y$	$10^{4} Z$
1	$\mathrm{~N}(1)$	$2784(3)$	$4608(9)$	$-1017(5)$
2	$\mathrm{C}(2)$	$2196(3)$	$4923(12)$	$-1665(6)$
3	$\mathrm{C}(3)$	$1901(4)$	$2988(13)$	$-2027(7)$
4	$\mathrm{C}(3 \mathrm{~A})$	$2341(3)$	$1482(11)$	$-1359(6)$
5	$\mathrm{C}(4)$	$2092(4)$	$476(12)$	$-648(6)$
6	$\mathrm{C}(5)$	$2602(4)$	$-738(13)$	$88(7)$
7	$\mathrm{C}(6)$	$3208(4)$	$179(13)$	$584(6)$
8	$\mathrm{C}(7)$	$3287(3)$	$2275(11)$	$327(6)$
9	$\mathrm{C}(7 \mathrm{~A})$	$2971(3)$	$2598(11)$	$-815(6)$
10	$\mathrm{C}(8)$	$3970(3)$	$2905(11)$	$707(6)$
11	$\mathrm{C}(9)$	$4112(3)$	$4812(12)$	$1011(7)$
12	$\mathrm{C}(10)$	$4723(4)$	$5380(12)$	$1306(6)$
13	$\mathrm{C}(11)$	$5192(3)$	$4138(13)$	$1316(7)$
14	$\mathrm{C}(12)$	$5076(4)$	$2280(14)$	$1034(8)$
15	$\mathrm{C}(13)$	$4440(4)$	$1658(12)$	$723(7)$
16	$\mathrm{O}(14)$	$1958(3)$	$6494(8)$	$-1933(5)$
17	$\mathrm{O}(15)$	$1906(2)$	$1836(9)$	$-72(4)$
18	$\mathrm{Si}(16)$	$1244(1)$	$2310(8)$	$40(3)$
19	$\mathrm{C}(17)$	$577(4)$	$1012(20)$	$-850(8)$
20	$\mathrm{C}(18)$	$1094(8)$	$5286(19)$	$-323(16)$
21	$\mathrm{C}(19)$	$1321(6)$	$2710(43)$	$1200(13)$
22	$\mathrm{C}(20)$	$723(5)$	$3550(27)$	$1379(10)$
23	$\mathrm{C}(21)$	$1393(8)$	$-105(24)$	$1469(12)$
24	$\mathrm{C}(22)$	$1904(6)$	$3848(34)$	$1852(11)$
25	$\mathrm{O}(23)$	$3134(3)$	$-1254(8)$	$-189(5)$
26	$\mathrm{O}(24)$	$4971(3)$	$7150(9)$	$1640(9)$
27	$\mathrm{C}(25)$	$5628(4)$	$7022(15)$	$1834(8)$
28	$\mathrm{O}(26)$	$5760(2)$	$5073(10)$	$1655(5)$

$195^{\circ} \mathrm{C} ; \delta_{\mathrm{H}}\left(\left[{ }^{2} \mathrm{H}_{5}\right]\right.$ pyridine $) 6.72-7.06(3 \mathrm{H}, \mathrm{m}, \mathrm{ArH} \times 3)$, 5.95 and 5.93 (each $1 \mathrm{H}, \mathrm{d}, J 2$, together $\left.\mathrm{OCH}_{2} \mathrm{O}\right), 4.56(1 \mathrm{H}, \mathrm{dd}, J 4.3$ and $8,4-\mathrm{H}), 4.12(1 \mathrm{H}, \mathrm{br} \mathrm{t}, J 8.9,7 \mathrm{a}-\mathrm{H}), 3.65(1 \mathrm{H}, \mathrm{d}, J 8.9,7-$ H), $3.63(1 \mathrm{H}, \mathrm{t}, J 4.3,5-\mathrm{H}), 3.39(1 \mathrm{H}, \mathrm{d}, J 4.3,6-\mathrm{H})$ and 2.44 $3.27\left(3 \mathrm{H}, \mathrm{m}, 3-\mathrm{H}_{2}\right.$ and $\left.3 \mathrm{a}-\mathrm{H}\right) ; v_{\text {max }} / \mathrm{cm}^{-1}: 3270$ and $1675 ; \mathrm{m} / \mathrm{z}$ $289\left(\mathrm{M}^{+}\right)$(Found: C, $62.3 ; \mathrm{H}, 5.0 ; \mathrm{N}, 4.9 . \mathrm{C}_{15} \mathrm{H}_{15} \mathrm{NO}_{5}$ requires C, 62.28; H, 5.23; N, 4.84\%).

Payne rearrangement

(a) With TBAF (Table 1, entries 1-3). A solution of silyl ether 25 (1 mol equiv.) and TBAF (3 mol equiv.) in THF (0.12 mol dm^{-3}) was stirred at room temperature. Removal of the solvent under cooling left a residue, which was taken up in AcOEt. The organic phase was washed successively with water and brine. Evaporation off of the solvent gave a mixture of epoxy alcohols 26 and 27, which was treated with $\mathrm{Ac}_{2} \mathrm{O}$ and pyridine at room temperature for 16 h . The reaction was quenched with 10% HCl , and the mixture was extracted with CHCl_{3}. Usual workup of the extract left a residue, PLC of which with (5:1) $\mathrm{CHCl}_{3}-\mathrm{MeOH}$ as developing solvent afforded acetates 28 and 29.
(b) With metal hydride (Table 1, entries 4-7). A mixture of regioisomeric alcohols 26 and 27 (1 mol equiv.) with metal hydride ($\mathrm{NaH}, \mathrm{KH}$ or $\mathrm{CaH}_{2}, 3 \mathrm{~mol}$ equiv.) in THF (0.33 mol dm^{-3}) was heated at an appropriate temperature. The reaction mixture was quenched with saturated aq. $\mathrm{NH}_{4} \mathrm{Cl}$, and extracted with AcOEt. Usual work-up of the organic phase furnished a mixture of epoxy alcohols 26 and 27, which was converted into the acetates 28 and 29 in a manner similar to that described in (a). In the reaction with NaH in THF at reflux, compounds 29 and $\mathbf{3 0}$ were obtained after acetylation.
(c) With aq. $\mathrm{K}_{2} \mathrm{CO}_{3}$ (Table 1, entries 8,9). A mixture of acetate 28 (1 mol equiv.) and 5% aq. $\mathrm{K}_{2} \mathrm{CO}_{3}$ (1.2 mol equiv.) in MeOH ($0.30 \mathrm{~mol} \mathrm{dm}{ }^{-3}$) was stirred at room temperature. After addition of water, the mixture was extracted with AcOEt. Work-up of the organic phase in the usual manner afforded a mixture of epoxy alcohols 26 and 27, which was converted into the acetates 28 and 29 in a manner similar to that described in (a).
(3aS*,4S*,5S*,6S*,7S*,7aR*)-5,6-Epoxy-7-(3',4'-methylene-
dioxyphenyl)-2-oxo-3a,4,5,6,7,7a-hexahydroindolin-4-yl acetate 28, mp 238-240 ${ }^{\circ} \mathrm{C}$ (from AcOEt); $\delta_{\mathrm{H}}(400 \mathrm{MHz}) 6.84$ $(1 \mathrm{H}, \mathrm{d}, J 1.8, \mathrm{ArH}), 6.79(1 \mathrm{H}, \mathrm{d}, J 8.1, \mathrm{ArH}), 6.74(1 \mathrm{H}, \mathrm{dd}$, $J 1.8$ and $8.1, \mathrm{ArH}), 5.96\left(2 \mathrm{H}, \mathrm{s}, \mathrm{OCH}_{2} \mathrm{O}\right), 5.50(1 \mathrm{H}$, br t, $J 4,4-$ H), $5.34(1 \mathrm{H}, \mathrm{br} \mathrm{s}, \mathrm{NH}), 3.82(1 \mathrm{H}, \mathrm{t}, J 9.5,7 \mathrm{a}-\mathrm{H}), 3.48(1 \mathrm{H}, \mathrm{t}, J$ $4,5-\mathrm{H}), 3.28(1 \mathrm{H}, \mathrm{d}, J 4,6-\mathrm{H}), 3.11(1 \mathrm{H}, \mathrm{d}, J 9.5,7-\mathrm{H}), 2.94$ $3.02(1 \mathrm{H}, \mathrm{m}, 3 \mathrm{a}-\mathrm{H}), 2.44(1 \mathrm{H}, \mathrm{dd}, J 11.4$ and $17.6,3-\mathrm{H}), 2.30(1$ $\mathrm{H}, \mathrm{dd}, J 7$ and $17.6,3-\mathrm{H}$) and $2.16(3 \mathrm{H}, \mathrm{s}, \mathrm{Ac}) ; v_{\text {max }} / \mathrm{cm}^{-1} 3420$, 1735 and $1690 ; m / z 331\left(\mathrm{M}^{+}\right)$; HRMS (Found: M^{+}, 331.1052. $\mathrm{C}_{17} \mathrm{H}_{17} \mathrm{NO}_{6}$ requires $\mathrm{M}, 331.1054$).
(3aS* $\left., 4 \mathrm{~S}^{*}, 5 \mathrm{~S}^{*}, 6 \mathrm{~S}^{*}, 7 \mathrm{~S}^{*}, 7 \mathrm{aR}^{*}\right)-4,5-$ Epoxy-7-($3^{\prime}, 4^{\prime}-$ methylene-dioxyphenyl)-2-oxo-3a,4,5,6,7,7a-hexahydroindolin-6-yl acetate 29, mp 180-181 ${ }^{\circ} \mathrm{C}$ (from AcOEt-hexane); $\delta_{\mathrm{H}}(270 \mathrm{MHz})$ $6.75(1 \mathrm{H}, \mathrm{d}, J 7.9, \mathrm{ArH}), 6.70(1 \mathrm{H}, \mathrm{d}, J 1.6, \mathrm{ArH}), 6.64(1 \mathrm{H}$, dd, $J 1.6$ and $7.9, \mathrm{ArH}), 5.96\left(2 \mathrm{H}, \mathrm{s}, \mathrm{OCH}_{2} \mathrm{O}\right), 5.40(1 \mathrm{H}, \mathrm{t}, J$ $3.3,6-\mathrm{H}), 5.30\left(1 \mathrm{H}, \mathrm{br} \mathrm{s}, w_{\frac{1}{2}} 8.4, \mathrm{NH}\right), 4.04(1 \mathrm{H}, \mathrm{dd}, J 8.1$ and $11.7,7 \mathrm{a}-\mathrm{H}), 3.51(1 \mathrm{H}$, apparent $\mathrm{t}, J 3.3,5-\mathrm{H}), 3.37(1 \mathrm{H}, \mathrm{t}, J 3.3$, $4-\mathrm{H}), 3.09-3.22(1 \mathrm{H}, \mathrm{m}, 3 \mathrm{a}-\mathrm{H}), 2.97(1 \mathrm{H}, \mathrm{dd}, J 3.2$ and $11.7,7-$ H), $2.67(1 \mathrm{H}, \mathrm{dd}, J 10.9$, and $17.0,3-\mathrm{H}), 2.52(1 \mathrm{H}, \mathrm{dd}, J 9.6$ and $17.0,3-\mathrm{H}$) and $2.08(3 \mathrm{H}, \mathrm{s}, \mathrm{Ac}) ; v_{\text {max }} / \mathrm{cm}^{-1} 3430,1750$ and 1700 ; $\mathrm{m} / \mathrm{z} 331\left(\mathrm{M}^{+}\right)$(Found: C, 61.75; H, 5.3; N, 4.2. $\mathrm{C}_{17} \mathrm{H}_{17} \mathrm{NO}_{6}$ requires $\mathrm{C}, 61.63 ; \mathrm{H}, 5.17$; $\mathrm{N}, 4.23 \%$).
(3aS*,4S*,5S*,7aR*)-7-(3',4'-Methylenedioxyphenyl)-2-oxo-3a,4,5,7a-tetrahydroindoline-4,5-diyl diacetate 30, mp 71-72 ${ }^{\circ} \mathrm{C}$ (from CHCl_{3}-hexane); $\delta_{\mathrm{H}} 6.64-6.86(3 \mathrm{H}, \mathrm{m}, \mathrm{ArH} \times 3), 5.97(2$ $\mathrm{H}, \mathrm{s}, \mathrm{OCH}_{2} \mathrm{O}$), $5.84(1 \mathrm{H}, \mathrm{dd}, J 1$ and $2.9,6-\mathrm{H}), 5.64(1 \mathrm{H}, \mathrm{br} \mathrm{s}$, $w_{\frac{1}{2}} 10.4, \mathrm{NH}$), $5.56(1 \mathrm{H}$, ddd, $J 1.4,2.9$ and $7.2,5-\mathrm{H}), 5.24(1 \mathrm{H}$, dd, $J 4.9$ and $7.2,4-\mathrm{H}), 4.69(1 \mathrm{H}, \mathrm{d}, J 7.2,7 \mathrm{a}-\mathrm{H}), 3.04-3.56(1 \mathrm{H}$, $\mathrm{m}, 3 \mathrm{a}-\mathrm{H}), 2.25-2.62\left(2 \mathrm{H}, \mathrm{m}, 3-\mathrm{H}_{2}\right)$ and 2.08 and 2.07 (each 3 H , $\mathrm{s}, \mathrm{Ac}) ; v_{\text {max }} / \mathrm{cm}^{-1} 3430,1740$ and $1700 ; \mathrm{m} / \mathrm{z} 373\left(\mathrm{M}^{+}\right)$; HRMS (Found: M^{+}, 373.1163. $\mathrm{C}_{19} \mathrm{H}_{19} \mathrm{NO}_{7}$ requires $\mathrm{M}, 373.1160$).
(3a $\left.S^{*}, 4 R^{*}, 5 R^{*}, 6 S^{*}, 7 S^{*}, 7 \mathrm{a} S^{*}\right)$-5,6-Dihydroxy-7-(3', $\mathbf{4}^{\prime}-$ methylenedioxyphenyl)-4-phenylselanyl-3a,4,5,6,7,7a-hexahydroindolin-2-one 31
To a stirred solution of $(\mathrm{PhSe})_{2}(0.0364 \mathrm{~g}, 0.113 \mathrm{mmol})$ in $\mathrm{EtOH}\left(2.2 \mathrm{~cm}^{3}\right)$ under argon was added $\mathrm{NaBH}_{4}(0.0094 \mathrm{~g}, 0.25$ mmol) in one portion. After the yellow solution became colourless, stereochemically β-epoxide $29(0.050 \mathrm{~g}, 0.15 \mathrm{mmol})$ was added to the mixture and the whole was refluxed for 15 min . Then the reaction was quenched with water, and the mixture was extracted with AcOEt. Usual work-up of the organic phase gave a residue, which was purified by PLC with (20:1) $\mathrm{CHCl}_{3}-\mathrm{MeOH}$ as developing solvent to furnish the selenide $31(0.0665 \mathrm{~g}, 98.7 \%)$, mp $84-86^{\circ} \mathrm{C}$; $\delta_{\mathrm{H}} 7.44-7.67(2 \mathrm{H}$, $\mathrm{m}, \mathrm{ArH} \times 2), 7.12-7.44(3 \mathrm{H}, \mathrm{m}, \mathrm{ArH} \times 3), 6.64(1 \mathrm{H}, \mathrm{d}, J 8$, $\mathrm{ArH}), 6.61(1 \mathrm{H}, \mathrm{d}, J 2, \mathrm{ArH}), 6.42(1 \mathrm{H}, \mathrm{dd}, J 2$ and $8, \mathrm{ArH}$), $5.91\left(2 \mathrm{H}, \mathrm{s}, \mathrm{OCH}_{2} \mathrm{O}\right), 5.44\left(1 \mathrm{H}, \mathrm{br} \mathrm{s}, w_{2} 4.3, \mathrm{NH}\right), 3.85-4.11(2$ $\mathrm{H}, \mathrm{m}), 3.52-3.75(1 \mathrm{H}, \mathrm{m})$ and $2.52-3.16(5 \mathrm{H}, \mathrm{m}) ; v_{\max } / \mathrm{cm}^{-1}$ 3150-3600 and 1680; m/z $447\left(\mathrm{M}^{+}\right)$; HRMS (Found: M^{+}, 447.0593. $\mathrm{C}_{21} \mathrm{H}_{21} \mathrm{NO}_{5} \mathrm{Se}$ requires $\mathrm{M}, 447.0583$).

($\left.3 \mathrm{aS} S^{*}, 4 R^{*}, 5 R^{*}, 6 S^{*}, 7 R^{*}, 7 \mathrm{a} S^{*}\right)$-7-($\mathbf{3}^{\prime}, 4^{\prime}-\mathrm{Methylenedioxyphen-}$ yl)-2-oxo-4-phenylselanyl-3a,4,5,6,7,7a-hexahydroindoline-5,6diyl diacetate 32

A solution of diol $31(0.025 \mathrm{~g}, 0.56 \mathrm{mmol})$ and $\mathrm{Ac}_{2} \mathrm{O}\left(0.1 \mathrm{~cm}^{3}\right)$ in pyridine $\left(1 \mathrm{~cm}^{3}\right)$ was stirred at room temperature for 21 h . After $10 \% \mathrm{HCl}$ was added to the mixture, the aqueous phase was extracted with AcOEt. Treatment of the extract in the usual manner gave diacetate $32\left(0.0292 \mathrm{~g}, 98.3 \%\right.$), mp $223^{\circ} \mathrm{C}$ (from CHCl_{3}-hexane); $\delta_{\mathrm{H}} 7.48-7.62(2 \mathrm{H}, \mathrm{m}, \mathrm{ArH} \times 2$), 7.16-7.44 (3 $\mathrm{H}, \mathrm{m}, \mathrm{ArH} \times 3), 6.69(1 \mathrm{H}, \mathrm{d}, J 8, \mathrm{ArH}), 6.60(1 \mathrm{H}, \mathrm{d}, J 1.2, \mathrm{ArH})$, $6.54(1 \mathrm{H}, \mathrm{dd}, J 1.2$ and $8, \mathrm{ArH}), 5.92\left(2 \mathrm{H}, \mathrm{s}, \mathrm{OCH}_{2} \mathrm{O}\right), 5.48(1 \mathrm{H}$, $\left.\mathrm{brs}, w_{\frac{1}{2}} 4, \mathrm{NH}\right), 5.26(1 \mathrm{H}, \mathrm{dd}, J 3.1$ and $8.3, \mathrm{H}-5), 5.07(1 \mathrm{H}, \mathrm{t}, J$ 3.1, 6-H), $4.16(1 \mathrm{H}, \mathrm{dd}, J 6.9$ and $9.7,7 \mathrm{a}-\mathrm{H}), 3.29(1 \mathrm{H}, \mathrm{t}, J$ 8.3, 4-H), 3.07 ($1 \mathrm{H}, \mathrm{dd}, J 3.1$ and $9.7,7-\mathrm{H}$), 2.70-2.92 (1 H , $\mathrm{m}, 3 \mathrm{a}-\mathrm{H}), 2.51-2.66\left(2 \mathrm{H}, \mathrm{m}, 3-\mathrm{H}_{2}\right)$ and 1.96 and 2.05 (each 3 $\mathrm{H}, \mathrm{s}, \mathrm{Ac}) ; v_{\text {max }}(\mathrm{KBr}) / \mathrm{cm}^{-1} 1750,1735$ and $1700 ; m / z 531\left(\mathrm{M}^{+}\right)$; HRMS (Found: M^{+}, 531.0827. $\mathrm{C}_{25} \mathrm{H}_{25} \mathrm{NO}_{7} \mathrm{Se}$ requires M , 531.0794).
($5 S^{*}, 6 S^{*}, 7 S^{*}, 7 \mathrm{a} S^{*}$)-7-($\mathbf{3}^{\prime}, \mathbf{4}^{\prime}-$ Methylenedioxyphenyl)-2-oxo-5,6,7,7a-tetrahydroindoline-5,6-diyl diacetate 33
A solution of selenide $32(0.0252 \mathrm{~g}, 0.048 \mathrm{mmol})$ and NaIO_{4} $(0.0203 \mathrm{~g}, 0.095 \mathrm{mmol})$ in a mixture of THF $\left(1.3 \mathrm{~cm}^{3}\right), \mathrm{MeOH}$ ($0.7 \mathrm{~cm}^{3}$), and water $\left(0.3 \mathrm{~cm}^{3}\right.$) was stirred at room temperature for 30 min and at $40^{\circ} \mathrm{C}$ for 3 h . The precipitate was filtered off and the filtrate was treated in the usual way and gave a residue, which was purified by PLC with ($10: 1$) AcOEt-hexane as developing solvent to furnish compound $33(0.0156 \mathrm{~g}, 87.9 \%$), $\mathrm{mp} 206-20{ }^{\circ} \mathrm{C}$ (from CHCl_{3}-hexane); $\delta_{\mathrm{H}} 6.60-6.82(3 \mathrm{H}, \mathrm{m}$, $\mathrm{ArH} \times 3), 5.95\left(2 \mathrm{H}, \mathrm{s}, \mathrm{OCH}_{2} \mathrm{O}\right), 5.64\left(1 \mathrm{H}, \mathrm{br} \mathrm{s}, w_{\frac{1}{2}} 8,5\right.$ - or 6 H), $5.46\left(1 \mathrm{H}\right.$, br s, $W_{\frac{1}{2}} 4.8,6$ or $5-\mathrm{H}$), $5.08-5.24(2 \mathrm{H}, \mathrm{m}, 4-\mathrm{H}$ and NH), $4.64(1 \mathrm{H}, \mathrm{br} \mathrm{d}, J 11.4,7 \mathrm{a}-\mathrm{H}), 3.00-3.47(2 \mathrm{H}, \mathrm{m}$, $\left.3-\mathrm{H}_{2}\right), 2.89(1 \mathrm{H}, \mathrm{dd}, J 2$ and $11.4,7-\mathrm{H})$ and 2.05 and 2.12 (each $3 \mathrm{H}, \mathrm{s}, \mathrm{Ac}) ; v_{\text {max }}(\mathrm{KBr}) / \mathrm{cm}^{-1} 1745,1720$ and 1695; m/z 373 (M^{+}); HRMS (Found: $\mathrm{M}^{+}, 373.1154 . \mathrm{C}_{19} \mathrm{H}_{19} \mathrm{NO}_{7}$ requires M , 373.1159).

($1 S^{*}, 2 R^{*}, 3 R^{*}$)-Di-o-acetyl-3-phenylselanyldihydrolycorin-5-

 one 34A solution of γ-lactam $32(0.019 \mathrm{~g}, 0.036 \mathrm{mmol}), 35 \%$ formalin $\left(0.1 \mathrm{~cm}^{3}\right)$, and saturated aq. $\mathrm{Na}_{2} \mathrm{CO}_{3}\left(0.02 \mathrm{~cm}^{3}\right)$ in THF $\left(1 \mathrm{~cm}^{3}\right)$ was stirred at room temperature for 2 h . Then, saturated aq. $\mathrm{NH}_{4} \mathrm{Cl}$ was added to the mixture, which was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. The residue (0.0203 g) obtained by the usual work-up of the organic phase was treated with TFA $\left(0.2 \mathrm{~cm}^{3}\right)$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ $\left(2 \mathrm{~cm}^{3}\right)$ at room temperature for 15 min under stirring. After addition of water, the product was taken up in CHCl_{3}. Usual work-up of the organic phase gave a residue, which was purified by PLC with ($50: 1$) $\mathrm{CHCl}_{3}-\mathrm{MeOH}$ as developing solvent to furnish pentacycle $34(0.0154 \mathrm{~g}, 79.4 \%), \mathrm{mp} 256-257.5^{\circ} \mathrm{C} ; \delta_{\mathrm{H}}$ 7.44-7.64 ($2 \mathrm{H}, \mathrm{m}, \mathrm{ArH} \times 2$), $7.22-7.38(3 \mathrm{H}, \mathrm{m}, \mathrm{ArH} \times 3)$, 6.28 and 6.35 (each $1 \mathrm{H}, \mathrm{s}, 8$ - and $11-\mathrm{H}), 5.89\left(2 \mathrm{H}, \mathrm{s}, \mathrm{OCH}_{2} \mathrm{O}\right)$, $5.74(1 \mathrm{H}, \mathrm{t}, J 3.1,1-\mathrm{H}), 5.18(1 \mathrm{H}, \mathrm{dd}, J 3.1$ and $9.7,2-\mathrm{H}), 4.92$ and 4.15 (each $1 \mathrm{H}, \mathrm{d}, J 17.1,7-\mathrm{H}_{2}$), $3.81(1 \mathrm{H}, \mathrm{dd}, J 8.3$ and 12 , $11 \mathrm{c}-\mathrm{H}), 3.30(1 \mathrm{H}, \mathrm{t}, J 9.7,3-\mathrm{H}), 3.10(1 \mathrm{H}, \mathrm{dd}, J 3.1$ and $12,11 \mathrm{~b}-$ H), 2.22-2.94 ($3 \mathrm{H}, \mathrm{m}, 3 \mathrm{a}-\mathrm{H}$ and $4-\mathrm{H}_{2}$) and 1.96 and 2.06 (each 3 $\mathrm{H}, \mathrm{s}, \mathrm{Ac}) ; v_{\text {max }} / \mathrm{cm}^{-1} 1745$ and 1685; $m / z 543\left(\mathrm{M}^{+}\right)$; HRMS (Found: $\mathrm{M}^{+}, 543.0812 . \mathrm{C}_{26} \mathrm{H}_{25} \mathrm{NO}_{7}$ Se requires $\mathrm{M}, 543.0794$).

(\pm)-Di-o-acetyllycorin-5-one 35

To a stirred solution of selenide $34(0.0079 \mathrm{~g}, 0.015 \mathrm{mmol})$ in a mixture of THF ($0.4 \mathrm{~cm}^{3}$) and $\mathrm{MeOH}\left(0.21 \mathrm{~cm}^{3}\right)$ was added aq. $\mathrm{NaIO}_{4}\left(0.0078 \mathrm{~g}, 0.036 \mathrm{mmol}\right.$ in $\left.0.09 \mathrm{~cm}^{3}\right)$. After being stirred at $40^{\circ} \mathrm{C}$ for 2 h , AcOEt was added. The filtrate obtained by removal of the precipitate was treated with the usual manner and gave a residue, which was purified by PLC with ($50: 1$) $\mathrm{CHCl}_{3}-\mathrm{MeOH}$ as developing solvent to furnish title compound $35(0.0032 \mathrm{~g}, 57.0 \%), \mathrm{mp} 242-244{ }^{\circ} \mathrm{C}$ (lit., $\left.{ }^{4 d} 244-245^{\circ} \mathrm{C}\right) ; \delta_{\mathrm{H}}(500$ $\mathrm{MHz}) 6.67$ and 6.68 (each $1 \mathrm{H}, \mathrm{s}$, together 8- and 11-H), 5.89 (2 $\left.\mathrm{H}, \mathrm{s}, \mathrm{OCH}_{2} \mathrm{O}\right), 5.80\left(1 \mathrm{H}, \mathrm{br} \mathrm{s}, w_{\frac{1}{2}} 5.3,1-\mathrm{H}\right), 5.60-5.63(1 \mathrm{H}$, $\mathrm{m}, 3-\mathrm{H}), 5.29-5.32(1 \mathrm{H}, \mathrm{m}, 2-\mathrm{H}), 4.44$ and 4.76 (each $1 \mathrm{H}, \mathrm{d}$, $J 17$, together $\left.7-\mathrm{H}_{2}\right), 4.14(1 \mathrm{H}, \mathrm{d}, J 10.2,11 \mathrm{c}-\mathrm{H}), 3.12$ and 3.38 (each 1 H, dd, $J 19.3$, together $4-\mathrm{H}_{2}$), $2.82(1 \mathrm{H}, \mathrm{d}, J 10.2$, $11 \mathrm{~b}-\mathrm{H}$) and 2.01 and 2.11 (each $3 \mathrm{H}, \mathrm{s}, \mathrm{Ac}$); $\nu_{\text {max }} / \mathrm{cm}^{-1} 1745$, 1705 and 1685; $m / z 385\left(\mathrm{M}^{+}\right)$: HRMS (Found: $\mathrm{M}^{+}, 385.1164$. Calc. for $\mathrm{C}_{20} \mathrm{H}_{19} \mathrm{NO}_{7} ; \mathrm{M}, 385.1160$). The ${ }^{1} \mathrm{H}$ NMR spectrum of compound 35 was identical with that ${ }^{4 d}$ of an authentic specimen.

($1 S^{*}, 2 R^{*}, 3 R^{*}$)-3-Phenylselanyldihydrolycorine $\mathbf{3 6}$

A solution of γ-lactam $32(0.0403 \mathrm{~g}, 0.086 \mathrm{mmol})$ and Vitride ${ }^{\text {® }}$ $\left(0.1 \mathrm{~cm}^{3}, 0.32 \mathrm{mmol}\right)$ in toluene ($2 \mathrm{~cm}^{3}$) was refluxed for 30 min . The reaction mixture was quenched with $3 \mathrm{~mol} \mathrm{dm}^{-3} \mathrm{NaOH}$ $\left(0.05 \mathrm{~cm}^{3}\right)$ and water. The aqueous phase was extracted with CHCl_{3}. The extract was dried $\left(\mathrm{K}_{2} \mathrm{CO}_{3}\right)$, and evaporated to give an amine (0.0336 g). After a mixture of the amine (0.0329 g) and Eschenmoser's salt ($0.047 \mathrm{~g}, 0.25 \mathrm{mmol}$) in THF ($5 \mathrm{~cm}^{3}$) had been refluxed for $1 \mathrm{~h}, 3 \mathrm{~mol} \mathrm{dm}{ }^{-3} \mathrm{NaOH}\left(0.1 \mathrm{~cm}^{3}\right)$ and water were added. The mixture was extracted with AcOEt. Work-up
of the organic phase as usual gave a residue, which was purified by PLC with (8:1) $\mathrm{CHCl}_{3}-\mathrm{MeOH}$ as developing solvent to afford title diol $36(0.0164 \mathrm{~g}, 43.5 \%), \mathrm{mp} 99-100{ }^{\circ} \mathrm{C} ; \delta_{\mathrm{H}}\left(\mathrm{CDCl}_{3}-\right.$ $\mathrm{CD}_{3} \mathrm{OD}$) inter alia 7.48-7.76 ($2 \mathrm{H}, \mathrm{m}, \mathrm{ArH} \times 2$), 7.12-7.38 (3 $\mathrm{H}, \mathrm{m}, \mathrm{ArH} \times 3$), 6.52 and 6.78 (each $1 \mathrm{H}, \mathrm{s}$, together 8 - and 11H) and $5.88\left(2 \mathrm{H}, \mathrm{s}, \mathrm{OCH}_{2} \mathrm{O}\right)$; $v_{\text {max }} / \mathrm{cm}^{-1} 3200-3625$ and 1680 ; $m / z 445\left(\mathrm{M}^{+}\right)$; HRMS (Found: M^{+}, 445.0804. $\mathrm{C}_{22} \mathrm{H}_{23} \mathrm{NO}_{4} \mathrm{Se}$ requires $\mathrm{M}, 445.0791$).

(\pm)-Di-o-acetyllycorine 37

A solution of selenide $36(0.0248 \mathrm{~g}, 0.056 \mathrm{mmol})$ and NaIO_{4} $(0.0274 \mathrm{~g}, 0.128 \mathrm{mmol})$ in a mixture of THF $\left(1 \mathrm{~cm}^{3}\right)$, water $\left(0.5 \mathrm{~cm}^{3}\right)$, and $\mathrm{MeOH}\left(1 \mathrm{~cm}^{3}\right)$ was stirred at $40^{\circ} \mathrm{C}$ for 10 min . Water was added and the product was taken up in AcOEt. Treatment of the organic phase as usual gave (\pm)-lycorine 1 ($0.0138 \mathrm{~g}, 86.3 \%$).

The reaction of lycorine 1 with $\mathrm{Ac}_{2} \mathrm{O}\left(0.06 \mathrm{~cm}^{3}\right)$ in pyridine $\left(0.2 \mathrm{~cm}^{3}\right)$ at room temperature for 24 h and usual work-up gave a residue, PLC of which with $(50: 1) \mathrm{CHCl}_{3}-\mathrm{MeOH}$ as developing solvent furnished title diacetate $37(0.0085 \mathrm{~g}, 41.1 \%$ from 36), mp 216-217 ${ }^{\circ} \mathrm{C}\left(\right.$ lit.,,$\left.^{4 d} 217-218^{\circ} \mathrm{C}\right) ; \delta_{\mathrm{H}}(500 \mathrm{MHz}) 6.74$ and 6.58 (each $1 \mathrm{H}, \mathrm{s}$, together $8-$ and $11-\mathrm{H}$), $5.92(2 \mathrm{H}, \mathrm{s}$, $\left.\mathrm{OCH}_{2} \mathrm{O}\right), 5.74\left(1 \mathrm{H}, \mathrm{br} \mathrm{s}, w_{\frac{1}{2}} 4.6,1-\mathrm{H}\right), 5.54\left(1 \mathrm{H}, \mathrm{brs}, w_{\frac{1}{2}} 7.6,3-\right.$ H), $5.25\left(1 \mathrm{H}, \mathrm{br} \mathrm{s}, w_{\frac{1}{2}} 6.5,2-\mathrm{H}\right), 4.15$ and 3.56 (each $1 \mathrm{H}, \mathrm{d}, J$ 13.5, together $\left.7-\mathrm{H}_{2}\right), 3.37\left(1 \mathrm{H}, \mathrm{br} \mathrm{s}, w_{\frac{1}{2}} 18.9,11 \mathrm{c}-\mathrm{H}\right), 2.89(1 \mathrm{H}$, d, $J 10.5,11 \mathrm{~b}-\mathrm{H}), 2.81\left(1 \mathrm{H}, \mathrm{br} \mathrm{s}, w_{\frac{1}{2}} 27.4,4-\right.$ or $\left.5-\mathrm{H}\right), 2.66(2 \mathrm{H}$, br s, $w_{\frac{1}{2}} 17.9,2 \times 4$ - or $\left.5-\mathrm{H}\right), 2.41\left(1 \mathrm{H}, \mathrm{br} \mathrm{s}, w_{\frac{1}{2}} 31.6,4-\right.$ or $\left.5-\mathrm{H}\right)$ and 2.08 and 1.95 (each $3 \mathrm{H}, \mathrm{s}, \mathrm{Ac}$); $v_{\text {max }} / \mathrm{cm}^{\frac{2}{1}} 1740 ; m / z 371$ $\left(\mathrm{M}^{+}\right)$; HRMS (Found: M^{+}, 371.1398. Calc. for $\mathrm{C}_{20} \mathrm{H}_{21} \mathrm{NO}_{6}$: M, 371.1401). (\pm)-Di-o-acetyllycorine 37 was identical in all respects with (-)-di-o-acetyllycorine.

Acknowledgements

We are grateful to Dr Yoshinori Hamada and Dr Katsumi Kotera, Shionogi Research Laboratories, Shionogi and Co., Ltd., for their generous gift of (-)-di-o-acetyllycorine and to Professor Takehiro Sano, Showa College of Pharmaceutical Sciences, for his kind supply of the ${ }^{1} \mathrm{H}$ NMR spectrum of (\pm) -di-o-acetyllycorin-5-one. Thanks are also due to Mr Michiaki Furue, Mr Masahiko Ikeda, Miss Noriko Shinohara and Miss Emiko Ishioka for their technical assistance, to Miss Noriko Sawabe and Mrs Fumiko Hasegawa, this faculty, for their ${ }^{1} \mathrm{H}$ NMR and mass spectral measurements, and to Sankyo Co., Ltd. for elementary analyses.

References

1 For a preliminary communication, see O. Hoshino, M. Ishizaki, K. Kamei, M. Taguchi, T. Nagao, K. Iwaoka, S. Sawaki, B. Umezawa and Y. Iitaka, Chem. Lett., 1991, 1365.

2 For reviews of chemistry of Amaryllidaceae alkaloids, see H. G. Boit, Ergebnisse der Alkaloid Chemie bis 1960, AcademicVerlag, Berlin, 1961; W. C. Wildman, The Amaryllidaceae Alkaloids in The Alkaloids, ed. R.H.F. Manske, Academic Press, New York, 1968, vol. 11, pp. 307-405; S. F. Martin, The Amaryllidaceae Alkaloids, in The Alkaloids, ed. A. R. Brossi, Academic Press, New York, 1987, vol. 30, pp. 251-376; J. R. Lewis, Nat. Prod. Rep., 1992, 9, 183.
3 (a) G. R. Pettit, V. Gaddamidi, A. Goswami and G. M. Cragg, J. Nat. Prod., 1984, 47, 796; (b) B. Gabrielsen, T. P. Monath, J. W. Huggins, D. F. Kefauver, G. R. Pettit, G. Groszek, M. Hollingshead, J. Kirsi, W. M. Shannon, E. M. Schubert, J. Dare, B. Ugarkar, M. A. Ussery and M. Phelan, J. Nat. Prod., 1992, 55, 1569; (c) E. Furusawa, S. Furusawa, S. Morimoto and W Cutting, Proc. Soc. Exp. Biol. Med., 1971, 136, 1168; (d) E. Furusawa, N. Suzuki, S. Ramanathan, S. Furusawa and W. Cutting, Proc. Soc. Exp. Biol. Med., 1972, 140, 1034; (e) P. De Leo, G. Dalessandro, A. De Santis and O. Arrgoni, Plant Cell Physiol., 1973, 14, 481, 487; (f) A. Numata, T. Takemura, H. Ohbayashi, T. Katsuno, K. Yamamoto, K. Sato and S. Kobayashi, Chem. Pharm. Bull., 1983, 31, 2146; (g) R. P. Singh and N. C. Pant, Experientia, 1980, 36, 552. 4 (a) Y. Tsuda, T. Sano, J. Taga, K. Isobe, J. Toda, H. Irie,
H. Tanaka, S. Takagi, M. Yamaki and M. Murata, J. Chem. Soc., Chem. Commun., 1975, 933; (b) Y. Tsuda, T. Sano, J. Taga, K. Isobe, J. Toda, S. Takagi, M. Yamaki, M. Murata, H. Irie and H. Tanaka, J. Chem. Soc., Perkin Trans. 1, 1979, 1358; (c) H. Irie, Y. Nagai, K. Tamoto and H. Tanaka, J. Chem. Soc., Chem. Commun., 1973, 302; (d) T. Sano, N. Kashiwaba, J. Toda, Y. Tsuda and H. Irie, Heterocycles, 1980, 14, 1097.
5 O. Møller, E.-M. Steinberg and K. Torssell, Acta Chem. Scand., Sect. B, 1978, 32, 98.
6 B. Umezawa, O. Hoshino, S. Sawaki, H. Sashida and K. Mori, Heterocycles, 1979, 12, 1475; B. Umezawa, O. Hoshino, S. Sawaki, H. Sashida, K. Mori, Y. Hamada, K. Kotera and Y. Iitaka, Tetrahedron, 1984, 40, 1783.
7 S. F. Martin and C. Tu, J. Org. Chem., 1981, 46, 3763; S. F. Martin, C. Tu, M. Kimura and S. H. Simonsen, J. Org. Chem., 1982, 47, 3634.

8 R. K. Boeckman, Jr., S. W. Goldstein and M. A. Walters, J. Am. Chem. Soc., 1988, 110, 8250.
9 E. J. Corey and R. L. Danheiser, Tetrahedron Lett., 1973, 4477; E. J. Corey, R. L. Danheiser, S. Chandrasekaran, G. E. Keck, B. Gopalan, S. D. Larsen, P. Siret and J.-L. Gras, J. Am. Chem. Soc., 1978, 100, 8034
10 For reviews of the stereoselectivity in intramolecular Diels-Alder reactions, see A. G. Fallis, Can. J. Chem., 1984, 62, 183; D. Craig, Chem. Soc. Rev., 1987, 16, 187; W. Roush, Stereochemical and Synthetic Studies of the Intramolecular Diels-Alder Reaction, in Advances in Cycloaddition, ed. D. P. Curran, JAI Press, London, 1990, vol. 2, pp. 91-146.
11 G. B. Payne, J. Org. Chem., 1962, 27, 3819.
12 C. F. VanDuin, Recl. Trav. Chim. Pays-Bas, 1926, 45, 348.

13 T. R. Hoye, A. S. Magee and W. S. Trumper, Synth. Commun., 1982, 12, 183.
14 K. N. Houk and R. W. Strozier, J. Am. Chem. Soc., 1973, 95, 4094; N. T. Anh, Tetrahedron, 1973, 29, 3227; K. J. Shea and J. W. Gilaman, Tetrahedron Lett., 1983, 24, 657.

15 (a) R. K. Hill, J. A. Joule and L. J. Loeffler, J. Am. Chem. Soc., 1962, 84, 4951; (b) B. Umezawa, O. Hoshino, S. Sawaki, S. Sato and N. Numao, J. Org. Chem., 1977, 42, 4272.

16 T. Kageyama, S. Kawahara, K. Kitamura, Y. Ueno and M. Okawara, Chem. Lett., 1983, 1097.

17 M. Fétizon and M. Golfier, C. R. Hebd. Seances Acad. Sci., Ser. C, 1968, 276, 900; M. Fétizon, M. Golfier and J. M. Louis, Chem. Commun., 1969, 1118.
18 T. Shioiri, K. Ninomiya and S. Yamada, J. Am. Chem. Soc., 1972, 94, 6203.
19 W. D. S. Motherwell and W. Clegg, PLUTO. A Program for Drawing Molecular and Crystal Structures, Cambridge Crystallographic Data Centre, University Chemical Laboratory, Lensfield Road, Cambridge CB2 IEW, UK, 1983.
20 K. B. Sharpless and R. F. Lauer, J. Am. Chem. Soc., 1973, 95, 2697.
21 V. Bazant, M. Capka, M. Cerny, V. Chvalovsky, K. Kochloefl, M. Kraus and J. Málek, Tetrahedron Lett., 1968, 3303.

22 G. E. Keck and R. R. Webb, II, J. Am. Chem. Soc., 1981, 103, 3173.
23 J. Schreiber, H. Maag, N, Hashimoto and A. Eschenmoser, Angew. Chem., Int. Ed. Engl., 1971, 10, 330.

Paper 5/03544I
Received 2nd June 1995
Accepted 14th September 1995

[^0]: ${ }^{a}$ All reactions were carried out in THF, unless otherwise stated. ${ }^{b}$ Isolated yield. ${ }^{c}$ Room temperature. ${ }^{d}$ Not isolated. ${ }^{e}$ In MeOH.

[^1]: ($3 \mathrm{a} S^{*}, 4 R^{*}, 7 S^{*}, 7 \mathrm{a} S^{*}$)-4-(tert-Butyldimethylsiloxy)-7-(3', $\mathbf{4}^{\prime}$ -methylenedioxyphenyl)-3a,4,7,7a-tetrahydroindolin-2-one 24 A solution of hydroxy γ-lactam $23(0.4199 \mathrm{~g}, 1.54 \mathrm{mmol})$,

[^2]: " Atomic coordinates, thermal parameters and bond lengths and angles have been deposited at the Cambridge Crystallographic Data Centre (CCDC). See Instructions for Authors, J. Chem. Soc., Perkin Trans. 1, 1996, Issue 1.

